G eorg i a This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed &ndla

in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. N aﬁ Ol'l al

SAND2019- 9952C _ pries

Enabling Resilience in Asynchronous
Many-Task Programming Models

Sri Raj Paul!, Akihiro Hayashi?, Nicole Slattengren3, Hemanth Kolla3, Matthew
Whitlock3, Seonmyeong Bak1, Keita Teranishi3, Jackson Mayo3, and Vivek Sarkar?

August 29, 2019

1. Georgia Institute of Technology
2. Rice University
3: Sandia National Laboratories

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

- Sandia
Ge%g%ﬁ @ National

Extreme-Scale Computing — ™"
Challenges

Large number of processing unit
Bandwidth and latency constraints

Heterogeneity
CPU, GPU, FPGA
NVRAM, Scratchpad, NMP

B RICE :

- Sandia
Ge%gsgg @ National

Extreme-Scale Computing — ™™
Challenges

Large number of processing unit
Bandwidth and latency constraints

Heterogeneity
CPU, GPU, FPGA
NVRAM, Scratchpad, NMP

Shorter mean times to failure than before

Includes transient failures

% RICE 2

Georgia @ Sandia
National
Tech Laboratories

Extreme-Scale Computing
Challenges

Large number of processing unit g %
- Bandwidth and latency constraints
<>
d - = ‘“ =i~ ’
Heterogeneity | =]
- NVRAM, Scratchpad, NMP g proscrysaleeHsyeges sonfeearshearaarspar s iece3

Shorter mean times to failure than before

Includes transient failures

% RICE 2

0 Sandia
Ge?.-'égc'ﬂ National

Extreme-Scale Programming ™
Challenge

Application programmers do not want to manage all system
resources or hardwire their code to a specific platform

- Decouple specification of computation and data from system
mapping for programmability and performance portability

« Computation can be decomposed into a large number of
asynchronous tasks

Support task migration using relocatable objects virtualized from
actual memory

% RICE 3

i Sandia
Ge?.-'égc'ﬁ National

Extreme-Scale Programming ™
Challenge

Application programmers do not want to manage all system
resources or hardwire their code to a specific platform

- Decouple specification of computation and data from system
mapping for programmability and performance portability

« Computation can be decomposed into a large number of
asynchronous tasks

Support task migration using relocatable objects virtualized from
actual memory

- A practical realization of these ideas can be found in
Asynchronous Many Task (AMT) models

% RICE 3

Georgia @ Sandia
National
Tech Laboratories

Asynchronous Many Task (AMT)
Runtime

- Application programmer expresses available parallelism in terms of

Data
‘ Task
Dependency

Tasks,

Dependencies between tasks

Data dependencies of tasks
The runtime performs

Scheduling of tasks

Migration of tasks/data between
nodes/cores to ensure
load balance and locality

- Advantages: more flexible resource
management, resilience support

HClib, OCR, PaRSEC, Uintah ...

B RICE .

- Sandia
Ge%g%ﬁ @ National

Type of Errors m

- Fail-stop error
* Process halts
* Need to restart the application

Can restart from intermediate state if checkpointing was performed

- Fail-continue error or soft/transient errors
Likely to be most important type of fault in exascale systems [1]
« DUE - Detected Uncorrected Errors

- SDC - Silent data corruptions
- Errors such as multiple faults that cancel each other, preventing
the HW from detecting it
- Require software mechanisms such as replication or checksum
to detect such errors

[1]Franck Cappello et al. 2014. Toward Exascale Resilience: 2014 Update. Supercomput. Front. Innov.: Int. J. 1, 1 (April 2014), 5-28. ‘

5

- Sandia
Ge%g%ﬁ @ National

Type of Errors m

- Fail-stop error
* Process halts
* Need to restart the application

Can restart from intermediate state if checkpointing was performed

- Fail-continue error or soft/transient errors
Likely to be most important type of fault in exascale systems [1]
« DUE - Detected Uncorrected Errors

- SDC - Silent data corruptions
- Errors such as multiple faults that cancel each other, preventing
the HW from detecting it
- Require software mechanisms such as replication or checksum
to detect such errors

[1]Franck Cappello et al. 2014. Toward Exascale Resilience: 2014 Update. Supercomput. Front. Innov.: Int. J. 1, 1 (April 2014), 5-28. ‘

5

Georgia @ Sandia
National
Tech Laboratories

Contributions

Programming model extensions to enable resilience
techniques for AMT applications

Support for arbitrary compositions of these extensions

Unified execution of resilient and non-resilient tasks in a
single framework

@RICE 6

Geqeth (1)
AMT Runtime and Resiliency

Tasks can be migrated to achieve load balance

Tasks can be migrated around faults
- Replay task in a different worker

Tasks provide a natural boundary on where to perform error-
checking/checkpointing

SPMD model needs to take a global checkpoint
No need for global checkpoint with AMT tasks

Input/Output to tasks provides information on what needs to be
checked/checkpointed

Input/Output of tasks can be done through promise/futures

7 6

- Sandia
Ge?.-'égc'ﬁ @ National

Habanero-C/C++ Library (HCIib)

 Library-based tasking runtime and API
- Semantically derived from X10 programming model

- Focused on: lightweight, minimal overheads; flexible
synchronization; locality control,;

- Simplified deployment: no custom compiler, entirely
library-based

- Uses runtime-managed call stacks to avoid blocking

% RICE 3

i Sandia
Ge%g%ﬁ @ National

HClib - AMT Runtime

Tasks are the basic unit of computation

Tasks can wait on completion of other tasks :
async_await(task_body, dependency_1, dependency 2, ..);

Promise: Store a value (put) using single assignment
semantics

Future: Fetch a value (get) stored in a promise
Can be used as a dependency to a task

Write to a Promise is synchronized with the read from its
corresponding Future

B RICE ;

i Sandi
% () e,
HCIlib - Task Example
void async_await(lambda, hclib_future t *f1, ..., hclib_future t *f4)

void main() {
operation_val();
print_result();
val = new value(get_val());
val_dep->put(val);

}

void operation_val() {

async_await(

[=] { val = val_dep->get_future()->get();

res = operation(val);

res_dep->put(res);

}, val_dep->get future());
}

%' RICE

val_dep : res_dep
Operation

10

void print_result() {
async_await(
[=] { res = res_dep->get_future()->get();
print(res);
}, res_dep->get future());
}
auto val_dep = new promise();

auto res_dep = new promise();

i Sandi
% () e,
HCIlib - Task Example
void async_await(lambda, hclib_future t *f1, ..., hclib_future t *f4)

void main() {
operation_val();
print_result();
val = new value(get_val());
val_dep->put(val);
}
void operation_val() {
async_await(
[=] { val = val_dep->get_future()->get();
res = operation(val);
res_dep->put(res);
}, val_dep->get_future());
}

%' RICE

val_dep : res_dep
Operation

10

void print_result() {
async_await(
[=] { res = res_dep->get_future()->get();
print(res);
}, res_dep->get future());
}
auto val_dep = new promise();

auto res_dep = new promise();

i Sandi
% () e,
HCIlib - Task Example
void async_await(lambda, hclib_future t *f1, ..., hclib_future t *f4)

void main() {
operation_val();
print_result();
val = new value(get_val());
val_dep->put(val);
}
void operation_val() {
async_await(
[=] { val = val_dep->get_future()->get();
res = operation(val);
res_dep->put(res);
}, val_dep->get_future());
}

%' RICE

val_dep : res_dep
Operation

10

void print_result() {
async_await(
[=] { res = res_dep->get_future()->get();
print(res);
}, res_dep->get future());
}
auto val_dep = new promise();

auto res_dep = new promise();

Georgia Sandia
Tech @ ramtl)ﬁes

1. Task Replication

N-way replicate the task and checks for
equality of put operations at the end of the
task

If error checking succeeds, actual puts are
done

If error checking fails, puts are ignored and
the error is reported using an output promise

' RICE 11

Georgia @ Sandia
National
Tech Laboratories

1. Task Replication

N-way replicate the task and checks for
equality of put operations at the end of the Fork
task

If error checking succeeds, actual puts are
done

\1/ Join
If error checking fails, puts are ignored and
the error is reported using an output promise

void async_await_check<N>(lambda, hclib::promise<int> out,
hclib_future t *f1, ..., hclib_future t *f4)

%' RICE 3

Georgia @ Sandia
National
Tech Laboratories

Resilient Promise

Extend promise to include additional storage for replicated
put operation

put is not published until the N-way task is finished and
correctness check succeeds

Added task-local storage to collect the promise for
publishing at the end of the task

Correctness is checked using equals() method provided by
the user object

@RICE 12

Ceqeth (1)
Data Management

Problem:

User needs to keep track of the last task that uses a promise and then
deallocate data

- Resiliency might involve multiple executions of the task

- User needs to keep track of correct vs bad execution
Solution:

- Added a reference count to a promise

« Count indicates the number of tasks that depends on the promise

- The promise is deallocated after the specified number of tasks finish
execution

RICE 13

S)
2. Replay Tasks

Executes the task and checks for error using the error
checking function

- User-provided error checking function returns true

if there is no error Up to N times
The task is executed a maximum of N times if there is (AN {)
- e N

any error

Replay

If error checking fails, puts are ignored and the error
Is reported using an output promise

- Puts should be performed on a resilient promise

% RICE 14 i

- Sandia
Ge%g%‘g @ National

Laboratories

2. Replay Tasks

Executes the task and checks for error using the error
checking function

- User-provided error checking function returns true
if there is no error

Up to N times

"YW ARR
-~ -~

The task is executed a maximum of N times if there is
any error

Replay

If error checking fails, puts are ignored and the error
Is reported using an output promise

- Puts should be performed on a resilient promise

void async_await_check<N>(lambda, hclib::promise<int> out,
std::function<int(void*)> error_check_fn, void * params,

hclib_future_t *f1, ..., hclib_future_t *f4) ‘
14

Georgia Sandia
Tech @ ramtl)ries

Algorithm Based Fault Tolerance (ABFT)

Use numerical properties of the algorithm to perform error
correction

- Executes the task and checks for error using the error
checking function

- Error checking function returns true if there is no error

If error checking fails, error correction routine is executed
and checked for error again at its end

- If error checking fails, puts are ignored and the error is
reported using an output promise

% RICE 15

Georgia Sandia
Tech @ 'l“amtllries

Algorithm Based Fault Tolerance (ABFT)

Use numerical properties of the algorithm to perform error
correction

- Executes the task and checks for error using the error
checking function

- Error checking function returns true if there is no error

If error checking fails, error correction routine is executed
and checked for error again at its end

- If error checking fails, puts are ignored and the error is
reported using an output promise

void async_await_check(lambda, hclib::promise<int> out,
std::function<int(void*)> error_check fn, void * params,

ABFT lambda, hclib_future t *f1, ..., hclib_future t *f4)
15

Georgia @ Sandia
National
Tech Laboratories

Preliminary Evaluation

» Cray XC40™ Supercomputer @ NERSC (Cori)

* Node
 Intel Xeon E5-2698 v3 @ 2.30GHz x 32 cores
- 128GB of RAM

- Replication: defaults to 2-way and if error is found 3-rd
replica is created.

- Replay: 3-way i.e if error is reported, maximum of 2
reruns are allowed.

B RICE .

)
Benchmarks

- Stencil 1D : 3-point stencil with 128 tiles of size 16000 doubles,
128 time steps per iteration, and 8192 iterations.

« Stencil 3D : 7-point stencil with 16x16x16 cubes, each cube
representing a subdomain of size 32x32x32 and 1024 iterations.

- Conjugate Gradient : Square matrix of 52804 rows/columns,
having 5,333,507 non-zeros with 128 tiles and 500 iterations

- Smith Waterman : Strings of sizes 185600 and 192000, divided
among 4096 tiles arranged as 64x64

« Cholesky : Matrix of size 24000x24000 divided into tiles of size
400x400

@RICE 17

Results - No Failures

= Baseline = Replay = Replication = ABFT

80
Ty Lower is better
g 60
3]
@
2
@
E 40
—
c
-
= 20
3]
)
.] mI
0

Stencil 1D Stencil 3D CG SW Cholesky

- Replay overhead causes a maximum 10% slowdown.

- Replication overhead causes the execution time to double.

S RICE i

Georgia Sandia
Tech National

Results - With Failures o

=1% =10%
25

20

L ower is better

15

Execution Time Difference (%)

%' RICE 1o

Tech

~
%2
v
c
o]
o
)
2)
N’
()
E
-
c
L.
—
=
O
3

80

60

40

20

Results - Mixing

= Baseline = 0% =20% =40% =60% =80% =100%

Stencil 1D Stencil 3D
- Mixing Replication (x%) and Replay (100-x)%
- Baseline is non-resilient execution time

- Percentage of replication shown in graph
20

Sandia
National
Laboratories

- Sandia
Ge%g%ﬁ @ National

Related Work

BSC (OmpSS): Task Replication
OSU+PNNL: Task Replay
UTK+ORNL: ABFT

ENS Lyon: Rigorous model for task replication
BLCR (LBL): Checkpoint/Restart

We demonstrate how to incorporate all these various
resilience mechanisms on a promise based tasking
infrastructure

% RICE o1

- Sandia
Ge?.-'égc'ﬁ @ National

Conclusion -

- AMT runtimes can support wide variety of resilience
mechanisms

- Adapted various benchmarks to be resilient to transient
errors

- Seamless composition of various resilience mechanisms

%' RICE 22

Georgia @ Sandia
National
Tech Laboratories

Future Work

- Composing with communication
* Nesting resilient tasks
- Exploration of multilevel checkpointing

- Study characteristics of faults to perform experiments
with more realistic fault injection

%' RICE 23

- Backup

% RICE

Georgia
Toch

M)

Results - Cache Reuse

* Replication is using less than twice the time

3D Stencil

Time

L1_DCM

L2 TCM

L3_TCM

Replay

40.58 sec

/.97E+10

3.32E+10

0.21E+08

Replication

/3.18 sec

1.61E+11

6.36E+10

9.19E+08

%' RICE
2

25

National
Laboratories

