
Georgia
Tech

Sandia
National
Laboratories

Enabling Resilience in Asynchronous
Many-Task Programming Models

Sri Ra. Paull, Akihiro Hayashi2, Nicole Slattengren3, Hemanth Kolla3, Matthew
Whitlock3, Seonmyeong Bak1, Keita Teranishi3, Jackson Mayo3, and Vivek Sarkar1

August 29, 2019

1 : Georgia lnstitute of Technology
2 : Rice University

3 : Sandia National Laboratories

RICE

SAND2019-9952C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Georg ia
Tech

Extreme-Scale Computing
Challenges

• Large number of processing unit

• Bandwidth and latency constraints

• Heterogeneity

• CPU, GPU, FPGA

• NVRAM, Scratchpad, NMP

2

Sandia
National
Laboratories

Georg ia
Tech

Extreme-Scale Computing
Challenges

• Large number of processing unit

• Bandwidth and latency constraints

• Heterogeneity

• CPU, GPU, FPGA

• NVRAM, Scratchpad, NMP

• Shorter mean times to failure than before

• Includes transient failures

2

Sandia
National
Laboratories

Georg ia
Tech

Extreme-Scale Computing
Challenges

• Large number of processing unit

• Bandwidth and latency constraints

• Heterogeneity

• CPU, GPU, FPGA

• NVRAM, Scratchpad, NMP

Sandia
National
Laboratories

https://www.crystalgraphicsimages.com/search/cartoon-man-computer-images

• Shorter mean times to failure than before

• Includes transient failures

2

Georg ia
Tech

Extreme-Scale Programming
Challenge

• Application programmers do not want to manage all system

resources or hardwire their code to a specific platform

Sandia
National
Laboratories

• Decouple specification of computation and data from system

mapping for programmability and performance portability

• Computation can be decomposed into a large number of

asynchronous tasks

• Support task migration using relocatable objects virtualized from

actual memory

3

Georg ia
Tech

Extreme-Scale Programming
Challenge

• Application programmers do not want to manage all system

resources or hardwire their code to a specific platform

Sandia
National
Laboratories

• Decouple specification of computation and data from system

mapping for programmability and performance portability

• Computation can be decomposed into a large number of

asynchronous tasks

• Support task migration using relocatable objects virtualized from

actual memory

• A practical realization of these ideas can be found in

Asynchronous Many Task (AMT) models

3

Georg ia
Tech

Asynchronous Many Task (AMT)
Runtime

• Application programmer expresses available parallelism in terms of

• Tasks,

• Dependencies between tasks

• Data dependencies of tasks

• The runtime performs

• Scheduling of tasks

• Migration of tasks/data between IDependency

nodes/cores to ensure

load balance and locality

• Advantages: more flexible resource

management, resilience support

• HClib, OCR, PaRSEC, Uintah

D1

Sandia
National
Laboratories

pp Data

Task

4

Georg ia
Tech

Type of Errors

Sandia
National
Laboratories

• Fail-stop error

• Process halts

• Need to restart the application

• Can restart from intermediate state if checkpointing was performed

• Fail-continue error or soft/transient errors

• Likely to be most important type of fault in exascale systems [1]

• DUE - Detected Uncorrected Errors

• SDC - Silent data corruptions

• Errors such as multiple faults that cancel each other, preventing
the HW from detecting it

• Require software mechanisms such as replication or checksum
to detect such errors

[1]Franck Cappello et al. 2014. Toward Exascale Resilience: 2014 Update. Supercomput. Front. Innov.: Int. J. 1, 1 (April 2014), 5-28.

5

Georg ia
Tech

Type of Errors

Sandia
National
Laboratories

• Fail-stop error

• Process halts

• Need to restart the application

• Can restart from intermediate state if checkpointing was performed

• Fail-continue error or soft/transient errors

• Likely to be most important type of fault in exascale systems [1]

• DUE - Detected Uncorrected Errors

• SDC - Silent data corruptions

• Errors such as multiple faults that cancel each other, preventing
the HW from detecting it

• Require software mechanisms such as replication or checksum
to detect such errors

[1]Franck Cappello et al. 2014. Toward Exascale Resilience: 2014 Update. Supercomput. Front. Innov.: Int. J. 1, 1 (April 2014), 5-28.

5

Georg ia
Tech

Sandia
National
Laboratories

Contributions

• Programming model extensions to enable resilience

techniques for AMT applications

• Support for arbitrary compositions of these extensions

• Unified execution of resilient and non-resilient tasks in a

single framework

6

Georg ia
Tech

AMT Runtime and Resiliency
• Tasks can be migrated to achieve load balance

• Tasks can be migrated around faults

• Replay task in a different worker

• Tasks provide a natural boundary on where to perform error-

checking/checkpointing

• SPMD model needs to take a global checkpoint

• No need for global checkpoint with AMT tasks

Sandia
National
Laboratories

• Input/Output to tasks provides information on what needs to be

checked/checkpoi nted

• Input/Output of tasks can be done through promise/futures

7

Georg ia
Tech

Sandia
National
Laboratories

Habanero-C/C++ Library (HClib

• Library-based tasking runtime and API
• Semantically derived from X10 programming model

• Focused on: lightweight, minimal overheads; flexible
synchronization; locality control;

• Simplified deployment: no custom compiler, entirely
library-based

• Uses runtime-managed call stacks to avoid blocking

8

Georg ia
Tech

AMT Runtime

• Tasks are the basic unit of computation

• Tasks can wait on completion of other tasks :

async await(task body, dependency 1, dependency 2, ..);

• Promise: Store a value (put) using single assignment

semantics

• Future: Fetch a value (get) stored in a promise

• Can be used as a dependency to a task

• Write to a Promise is synchronized with the read from its

corresponding Future

Sandia
National
Laboratories

RICE 9

Georg ia
Tech

HClib - Taql Exam
void async_await(lambda, hclib_future_t *fl , ..., hclib_future_t *f4)

void main() {

operation_val(); val_dep res_dep

print_result();

val = new value(get_val());

val_dep->put(val); void print_result() {

} async_awai (

void operation_val() { [=] { res = res_dep->get_future()->get();

async awal (_ print(res);

[=] { val = val_dep->get_future()->get(); }, res_dep->get_future());

res = operation(val); }

res_dep->pu (res); auto val_dep = new promise();

}, val_dep->get_future()); auto res_dep = nev‘ promise();

}

RICE 10

Operation

Sandia
National
Laboratories

Georgia
Tech

Hall - Taql Exam
void async_await(lambda, hclib_future_t *fl , ..., hclib_future_t *f4)

void main() {

operation_val();

print_result();

val = new value(get_val());

val_dep->put(val);

}

void operation_val() {

async_await(

[=] { val = val_dep->get_future()->get();

res = operation(val);

res_dep-> (res);

}, val_dep->get_future());

}

RICE

val_dep

10

res_dep

FT

4111111 -

print_result() {

async_await(

[=] { res = res_dep->get_future()->get();

print(res);

}, res_dep->get_future());

}

auto val_dep = new promise();

auto res_dep = promise();

Sandia
National
Laboratories

Georg ia
Tech

HClib Taql Exam
void async_await(lambda, hclib_future_t *fl , hclib_future_t *f4)

void main() {

operation_val();

print_result();

val = new value(get_val());

val_dep->put(val);

}
void operation_val()

async_await(

[=] { val = val_dep->get_future()->get();

res = operation(val);

res_dep-> (res);

}, val_dep->get_future());

}

RICE

val_dep res_dep
Operation

10

void print_result() {

async_await(

[=] { res = res_dep->get_future()->get();

print(res);

}, res_dep->get_future());

}
auto val_dep = new promise();

auto res_dep = nev‘ promise();

Sandia
National
Laboratories

Georg ia
Tech

Sandia
National
Laboratories

1. Task Replication

• N-way replicate the task and checks for

equality of put operations at the end of the

task

• If error checking succeeds, actual puts are

done irAt

• If error checking fails, puts are ignored and

the error is reported using an output promise

Fork

Join

Georg ia
Tech

Sandia
National
Laboratories

1. Task Replication

• N-way replicate the task and checks for

equality of put operations at the end of the

task

• If error checking succeeds, actual puts are

done

• If error checking fails, puts are ignored and

the error is reported using an output promise

void async_await_check<N>(lambda, hclib::promise<int> out,

hclib_future_t 11, ..., hclib_future_t *f4)

11

Fork

Join

Georg ia
Tech

Sandia
National
Laboratories

Resilient Promise

• Extend promise to include additional storage for replicated

put operation

• put is not published until the N-way task is finished and

correctness check succeeds

• Added task-local storage to collect the promise for

publishing at the end of the task

• Correctness is checked using equals() method provided by

the user object

12

Georg ia
Tech

Data Management
• Problem:

• User needs to keep track of the last task that uses a promise and then

deallocate data

• Resiliency might involve multiple executions of the task

• User needs to keep track of correct vs bad execution

• Solution:

• Added a reference count to a promise

• Count indicates the number of tasks that depends on the promise

• The promise is deallocated after the specified number of tasks finish

execution

Sandia
National
Laboratories

13

Georg ia
Tech [Pt

Sandia
National
Laboratories

2. Replay Tasks
• Executes the task and checks for error using the error

checking function

• User-provided error checking function returns true

if there is no error

• The task is executed a maximum of N times if there is

any error

• If error checking fails, puts are ignored and the error

is reported using an output promise

• Puts should be performed on a resilient promise

14

Up to N times

Georg ia
Tech [Pt

Sandia
National
Laboratories

2. Replay Tasks
• Executes the task and checks for error using the error

checking function

• User-provided error checking function returns true

if there is no error

• The task is executed a maximum of N times if there is

any error

• If error checking fails, puts are ignored and the error

is reported using an output promise

• Puts should be performed on a resilient promise

void async_await_check<N>(lambda, hclib::promise<int> out,

std::function<int(void*)> error check fn, void * params,

hclib_future_t 11, ..., hclib_future_t *f4)
14

Up to N times

Georgia
Tech

Sandia
National
Laboratories

Algorithm Based Fault Tolerance (ABFT)

• Use numerical properties of the algorithm to perform error

correction

• Executes the task and checks for error using the error

checking function

• Error checking function returns true if there is no error ABFT

• If error checking fails, error correction routine is executed

and checked for error again at its end

• If error checking fails, puts are ignored and the error is

reported using an output promise

RICE 15

Georg ia
Tech

Sandia
National
Laboratories

Algorithm Based Fault Tolerance (ABFT)

• Use numerical properties of the algorithm to perform error

correction

• Executes the task and checks for error using the error

checking function

• Error checking function returns true if there is no error

• If error checking fails, error correction routine is executed

and checked for error again at its end

• If error checking fails, puts are ignored and the error is

reported using an output promise

void async_await_check(lambda, hclib::promise<int> out,

std::function<int(void*)> error check fn, void * params,

ABFT lambda, hclib_future_t *fl , hclib_future_t 14)
15

ABFT

Georg ia
Tech

Preliminary Evaluation

• Cray XC4OTM Supercomputer @ NERSC (Cori)

• Node
• Intel Xeon E5-2698 v3 @ 2.30GHz x 32 cores
• 128GB of RAM

Sandia
National
Laboratories

• Replication: defaults to 2-way and if error is found 3-rd
replica is created.

• Replay: 3-way i.e if error is reported, maximum of 2
reruns are allowed.

-\
16

Georg ia
Tech

Benchmarks

Sandia
National
Laboratories

• Stencil 1D : 3-point stencil with 128 tiles of size 16000 doubles,
128 time steps per iteration, and 8192 iterations.

• Stencil 3D : 7-point stencil with 16x16x16 cubes, each cube
representing a subdomain of size 32x32x32 and 1024 iterations.

• Conjugate Gradient : Square matrix of 52804 rows/columns,
having 5,333,507 non-zeros with 128 tiles and 500 iterations

• Smith Waterman : Strings of sizes 185600 and 192000, divided
among 4096 tiles arranged as 64x64

• Cholesky : Matrix of size 24000x24000 divided into tiles of size
400x400

17

Georg ia
Tech

Ex
ec
ut

io
n
T
i
m
e
 (
S
e
c
o
n
d
s
)

80

60

40

20

o

Results - No Fault

• Baseline • Replay • Replication m AB1-1

Lower is better

Stencil 1D Stencil 3D CG SW Cholesky

• Replay overhead causes a maximum 10% slowdown.

• Replication overhead causes the execution time to double.
18

Sandia
National
Laboratories

Georgia
Tech

Ex
ec

ut
io

n
T
i
m
e
 D
if

fe
re

nc
e
(
%
)
 25

20

15

10

5

0

Results With Failures

Lower is better

• 1% • 10%

1 1

Sanda
National
laboratories

f.x%\... •• '-\fto • %- %- %-\tb • 0 \II> • 0 \rto • 0 N
/<

'1/4.•° '1/413 ' ' lk 11/4 <bet. e,' rt. cri< tb 02,4̀ et. (.''.t̀ c-'?" _'''' c' c.1- c'N. C.' A C'
siZ

C) sZ
e4̀ (iPS _129 (IP _sz''' ci c„;-_z̀iN _e's' c)

(.1 .1-\ N2%PSI r P C.) CV (>

RICE 19

Georg ia
Tech

Ex
ec
ut
io
n
T
i
m
e
 (
S
e
c
o
n
d
s
)

RICE

80

60

40

20

0

Results Mixing

• Baseline •Oi 20% • 40% • 60% • 80% • 100%

Stencil 1D Stencil 3D

• Mixing Replication (x%) and Replay (100-x)%

• Baseline is non-resilient execution time

• Percentage of replication shown in graph
20

Sandia
National
laboratories

Georg ia
Tech

Sandia
National
Laboratories

Related Work

• BSC (OmpSS): Task Replication

• OSU+PNNL: Task Replay

• UTK+ORNL: ABFT

• ENS Lyon: Rigorous model for task replication

• BLCR (LBL): Checkpoint/Restart

• We demonstrate how to incorporate all these various

resilience mechanisms on a promise based tasking

infrastructure

21

Georg ia
Tech

Conclusion

• AMT runtimes can support wide variety of resilience
mechanisms

• Adapted various benchmarks to be resilient to transient
errors

Sandia
National
Laboratories

• Seamless composition of various resilience mechanisms

22

Georg ia
Tech

Future Work

• Composing with communication

• Nesting resilient tasks

• Exploration of multilevel checkpointing

• Study characteristics of faults to perform experiments
with more realistic fault injection

23

Sandia
National
Laboratories

• Backup

RICE

Georg ia
Tech

Results - Cache Reuse

• Replication is using less than twice the time

Replay

Replication

40.58 sec

73. 18 sec

7.97E+ 10

1.61E+ 11

25

3.32E+ 10

6.36E+ 10

6.21E+08

9. 19E+08

Sandia
National
Laboratories

