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resources or hardwire their code to a specific platform

Sandia
National
Laboratories

• Decouple specification of computation and data from system

mapping for programmability and performance portability

• Computation can be decomposed into a large number of

asynchronous tasks

• Support task migration using relocatable objects virtualized from

actual memory
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• Decouple specification of computation and data from system

mapping for programmability and performance portability

• Computation can be decomposed into a large number of

asynchronous tasks

• Support task migration using relocatable objects virtualized from

actual memory

• A practical realization of these ideas can be found in

Asynchronous Many Task (AMT) models
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Asynchronous Many Task (AMT)
Runtime

• Application programmer expresses available parallelism in terms of

• Tasks,

• Dependencies between tasks

• Data dependencies of tasks

• The runtime performs

• Scheduling of tasks

• Migration of tasks/data between IDependency

nodes/cores to ensure

load balance and locality

• Advantages: more flexible resource

management, resilience support

• HClib, OCR, PaRSEC, Uintah
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• Fail-stop error

• Process halts

• Need to restart the application

• Can restart from intermediate state if checkpointing was performed

• Fail-continue error or soft/transient errors

• Likely to be most important type of fault in exascale systems [1]

• DUE - Detected Uncorrected Errors

• SDC - Silent data corruptions

• Errors such as multiple faults that cancel each other, preventing
the HW from detecting it

• Require software mechanisms such as replication or checksum
to detect such errors

[1]Franck Cappello et al. 2014. Toward Exascale Resilience: 2014 Update. Supercomput. Front. Innov.: Int. J. 1, 1 (April 2014), 5-28.
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• Errors such as multiple faults that cancel each other, preventing
the HW from detecting it
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to detect such errors

[1]Franck Cappello et al. 2014. Toward Exascale Resilience: 2014 Update. Supercomput. Front. Innov.: Int. J. 1, 1 (April 2014), 5-28.
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Contributions

• Programming model extensions to enable resilience

techniques for AMT applications

• Support for arbitrary compositions of these extensions

• Unified execution of resilient and non-resilient tasks in a

single framework

6



Georg ia
Tech

AMT Runtime and Resiliency
• Tasks can be migrated to achieve load balance

• Tasks can be migrated around faults

• Replay task in a different worker

• Tasks provide a natural boundary on where to perform error-

checking/checkpointing

• SPMD model needs to take a global checkpoint

• No need for global checkpoint with AMT tasks
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• Input/Output to tasks provides information on what needs to be

checked/checkpoi nted

• Input/Output of tasks can be done through promise/futures

7



Georg ia
Tech

Sandia
National
Laboratories

Habanero-C/C++ Library (HClib

• Library-based tasking runtime and API
• Semantically derived from X10 programming model

• Focused on: lightweight, minimal overheads; flexible
synchronization; locality control;

• Simplified deployment: no custom compiler, entirely
library-based

• Uses runtime-managed call stacks to avoid blocking

8
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AMT Runtime

• Tasks are the basic unit of computation

• Tasks can wait on completion of other tasks :

async await(task body, dependency 1, dependency 2, ..);

• Promise: Store a value (put) using single assignment

semantics

• Future: Fetch a value (get) stored in a promise

• Can be used as a dependency to a task

• Write to a Promise is synchronized with the read from its

corresponding Future
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HClib - Taql Exam
void async_await(lambda, hclib_future_t *fl , ..., hclib_future_t *f4)

void main() {

operation_val(); val_dep res_dep

print_result();

val = new value(get_val());

val_dep->put(val); void print_result() {

} async_awai (

void operation_val() { [=] { res = res_dep->get_future()->get();

async awal (_ print(res);

[=] { val = val_dep->get_future()->get(); }, res_dep->get_future());

res = operation(val); }

res_dep->pu (res); auto val_dep = new promise();

}, val_dep->get_future()); auto res_dep = nev‘ promise();

}

RICE 10
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void async_await(lambda, hclib_future_t *fl , ..., hclib_future_t *f4)

void main() {

operation_val();

print_result();

val = new value(get_val());

val_dep->put(val);

}

void operation_val() {

async_await(

[=] { val = val_dep->get_future()->get();

res = operation(val);

res_dep-> (res);

}, val_dep->get_future());

}

RICE
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res_dep

FT

4111111 -

print_result() {

async_await(

[=] { res = res_dep->get_future()->get();

print(res);

}, res_dep->get_future());

}

auto val_dep = new promise();

auto res_dep = promise();
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HClib Taql Exam
void async_await(lambda, hclib_future_t *fl , hclib_future_t *f4)

void main() {

operation_val();

print_result();

val = new value(get_val());

val_dep->put(val);

}
void operation_val()

async_await(

[=] { val = val_dep->get_future()->get();

res = operation(val);

res_dep-> (res);

}, val_dep->get_future());

}
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void print_result() {

async_await(

[=] { res = res_dep->get_future()->get();

print(res);

}, res_dep->get_future());

}
auto val_dep = new promise();

auto res_dep = nev‘ promise();
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1. Task Replication

• N-way replicate the task and checks for

equality of put operations at the end of the

task

• If error checking succeeds, actual puts are

done irAt

• If error checking fails, puts are ignored and

the error is reported using an output promise

Fork

Join
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• N-way replicate the task and checks for

equality of put operations at the end of the

task

• If error checking succeeds, actual puts are

done

• If error checking fails, puts are ignored and

the error is reported using an output promise

void async_await_check<N>(lambda, hclib::promise<int> out,

hclib_future_t 11, ..., hclib_future_t *f4)
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Resilient Promise

• Extend promise to include additional storage for replicated

put operation

• put is not published until the N-way task is finished and

correctness check succeeds

• Added task-local storage to collect the promise for

publishing at the end of the task

• Correctness is checked using equals() method provided by

the user object
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Data Management
• Problem:

• User needs to keep track of the last task that uses a promise and then

deallocate data

• Resiliency might involve multiple executions of the task

• User needs to keep track of correct vs bad execution

• Solution:

• Added a reference count to a promise

• Count indicates the number of tasks that depends on the promise

• The promise is deallocated after the specified number of tasks finish

execution

Sandia
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2. Replay Tasks
• Executes the task and checks for error using the error

checking function

• User-provided error checking function returns true

if there is no error

• The task is executed a maximum of N times if there is

any error

• If error checking fails, puts are ignored and the error

is reported using an output promise

• Puts should be performed on a resilient promise

14
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• User-provided error checking function returns true

if there is no error

• The task is executed a maximum of N times if there is

any error

• If error checking fails, puts are ignored and the error

is reported using an output promise

• Puts should be performed on a resilient promise

void async_await_check<N>(lambda, hclib::promise<int> out,

std::function<int(void*)> error check fn, void * params,

hclib_future_t 11, ..., hclib_future_t *f4)
14
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Algorithm Based Fault Tolerance (ABFT)

• Use numerical properties of the algorithm to perform error

correction

• Executes the task and checks for error using the error

checking function

• Error checking function returns true if there is no error ABFT

• If error checking fails, error correction routine is executed

and checked for error again at its end

• If error checking fails, puts are ignored and the error is

reported using an output promise

RICE 15
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Algorithm Based Fault Tolerance (ABFT)

• Use numerical properties of the algorithm to perform error

correction

• Executes the task and checks for error using the error

checking function

• Error checking function returns true if there is no error

• If error checking fails, error correction routine is executed

and checked for error again at its end

• If error checking fails, puts are ignored and the error is

reported using an output promise

void async_await_check(lambda, hclib::promise<int> out,

std::function<int(void*)> error check fn, void * params,

ABFT lambda, hclib_future_t *fl , hclib_future_t 14)
15
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Preliminary Evaluation

• Cray XC4OTM Supercomputer @ NERSC (Cori)

• Node
• Intel Xeon E5-2698 v3 @ 2.30GHz x 32 cores
• 128GB of RAM
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• Replication: defaults to 2-way and if error is found 3-rd
replica is created.

• Replay: 3-way i.e if error is reported, maximum of 2
reruns are allowed.

-\
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Benchmarks
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• Stencil 1D : 3-point stencil with 128 tiles of size 16000 doubles,
128 time steps per iteration, and 8192 iterations.

• Stencil 3D : 7-point stencil with 16x16x16 cubes, each cube
representing a subdomain of size 32x32x32 and 1024 iterations.

• Conjugate Gradient : Square matrix of 52804 rows/columns,
having 5,333,507 non-zeros with 128 tiles and 500 iterations

• Smith Waterman : Strings of sizes 185600 and 192000, divided
among 4096 tiles arranged as 64x64

• Cholesky : Matrix of size 24000x24000 divided into tiles of size
400x400
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Lower is better

Stencil 1D Stencil 3D CG SW Cholesky

• Replay overhead causes a maximum 10% slowdown.

• Replication overhead causes the execution time to double.
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Results Mixing

• Baseline •Oi 20% • 40% • 60% • 80% • 100%

Stencil 1D Stencil 3D

• Mixing Replication (x%) and Replay (100-x)%

• Baseline is non-resilient execution time

• Percentage of replication shown in graph
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Related Work

• BSC (OmpSS): Task Replication

• OSU+PNNL: Task Replay

• UTK+ORNL: ABFT

• ENS Lyon: Rigorous model for task replication

• BLCR (LBL): Checkpoint/Restart

• We demonstrate how to incorporate all these various

resilience mechanisms on a promise based tasking

infrastructure
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Conclusion

• AMT runtimes can support wide variety of resilience
mechanisms

• Adapted various benchmarks to be resilient to transient
errors
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• Seamless composition of various resilience mechanisms
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Future Work

• Composing with communication

• Nesting resilient tasks

• Exploration of multilevel checkpointing

• Study characteristics of faults to perform experiments
with more realistic fault injection

23
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• Backup
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Results - Cache Reuse

• Replication is using less than twice the time

Replay

Replication

40.58 sec

73. 18 sec

7.97E+ 10

1.61E+ 11

25
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6.21E+08
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