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ABSTRACT

We investigate deep neural networks to reconstruct and classify hyperspectral images from compressive sensing
measurements. Hyperspectral sensors provide detailed spectral information to differentiate materials. However,
traditional imagers require scanning to acquire spatial and spectral information, which increases collection time.
Compressive sensing is a technique to encode signals into fewer measurements. It can speed acquisition time,
but the reconstruction can be computationally intensive. First we describe multilayer perceptrons to recon-
struct compressive hyperspectral images. Then we compare two different inputs to machine learning classifiers:
compressive sensing measurements and the reconstructed hyperspectral image. The classifiers include support
vector machines, K nearest neighbors, and three neural networks (3D convolutional neural networks and recur-
rent neural networks). The results show that deep neural networks can speed up the time for the acquisition,
reconstruction, and classification of compressive hyperspectral images.
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1. BACKGROUND: COMPRESSIVE HYPERSPECTRAL IMAGING

Compressive hyperspectral imaging reduces measurements

Hyperspectral imagers typically require scanning across a scene to collect spectral measurements. A snapshot
hyperspectral imager reduces the number of measurements and avoids the need for spatial scanning. It requires
reconstruction algorithms to recover the hyperspectral image from measurements. The reconstruction becomes an
underdetermined inverse problem: the number of measurements is less than the number of bands. Regularization
techniques such as total variation minimization help to make the problem less ill-posed by adding physical
constraints such as smoothness along the spatial and spectral dimensions.! However, these compressive sensing
algorithms demand heavy computation,!® while greedy algorithms may converge to local minima.®” In this
work, we explore neural networks for two tasks:

1. Reconstruct the hyperspectral image from compressed measurements.

2. Classify the hyperspectral image from compressed measurements.

For Task 2, we compare two inputs for classification: the compressed measurements, and the reconstructed
hyperspectral image from the compressed measurements. These tasks address our research questions:

1. Can neural networks reduce computation time for reconstruction?

2. Can neural networks improve classification accuracy for hyperspectral images, either from compressed
measurements or reconstructed spectra, compared with traditional classifiers like support vector machines?

3. How does classification performance compare using compressed measurements as input, versus using re-
constructed spectra as input?

Filter light by varying spectral transmissions
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Figure 1: The proposed compressive hyperspectral imager filters light before the detector array.! Each measure-
ment corresponds to a different spectral transmission on the filter array.
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Figure 2: Examples of spectral transmissions of a Fabry-Perot resonator. The spectral transmission depends the
mirror spacing in the resonator.
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Figure 3: Spectral transmission as a function of mirror spacing and wavelength. The number of measurements
equals the number of mirror spacings.

The proposed compressive hyperspectral imager filters light before the detector array, as shown in Fig. 1. Each
measurement corresponds to a different spectral transmission on the filter array. Examples of filter arrays include
spatial light modulators (liquid crystal displays) and Fabry-Perot resonators, where spectral transmittance varies
by applying a digital signal or voltage. This paper will consider Fabry-Perot resonators, in which mirror spacing
can vary to control the spectral transmission. Figure 2 shows examples of spectral transmissions at four different
mirror spacings. Figure 3 displays the spectral transmittance with mirror spacings ranging from 2 um to
32 pum over wavelengths from 0.4 um to 2.5 um. Compressive hyperspectral imagery is hyperspectral imagery
collected from compressive sensing measurements. We refer to Lee! for more details on the proposed compressive
hyperspectral imager.

2. EXPERIMENTS
2.1 Dataset

The Indian Pines dataset is a hyperspectral image of 145 x 145 pixels with a 20 m spatial resolution and 10 nm
spectral resolution over the range of 400-2500 nm, divided into 220 bands.® The filter array of the hyperspectral
imager modulates all of the 220 bands, including the water absorption region. Each pixel label corresponds to a
farm crop as shown in Fig. 4. Note that each crop exhibits intraclass variation.

2.2 Task 1: Reconstruction of compressive hyperspectral images

This task aims to reconstruct compressive hyperspectral images using neural networks, which will help reduce
computation time with fast inference.

Data augmentation with random spectra and additive noise helps to prevent overfitting

Task 1 draws from two datasets:

Further author information: (Send correspondence to D.J.L.)
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Class labels

Figure 4: Labels of the Indian Pines hyperspectral image. Each label corresponds to a type of farm crop.

1. Indian Pines dataset

2. Random spectra dataset

For the second dataset, we generate random spectra with 220 bands from a normal distribution with zero
mean and unit variance. Then we apply a Hanning filter with window sizes that vary from 11, 21, 31, and 41.
This random dataset contains 145 x 145 = 21025 spectra, the same number as the Indian Pines dataset.

For each dataset, we reserve 60% for training, 20% for validation, and 20% for testing, maintaining the class
imbalance between each split. Note that each split contains equal amounts of each dataset.

For the training split, we add random noise to the Indian Pines dataset, generated from the saeme process
as the second dataset. The additive noise and the second dataset help to prevent overfitting, so that the neural
network does not memorize the training data. We normalize each dataset to zero mean and unit variance.

Multilayer perceptrons reconstruct compressive hyperspectral images

In our experiments, the compressed signal length varies from 160, 80, 40, 20, to 10 measurements. The goal
is to reconstruct 220 bands, so the number of measurements is less than the length of the original spectrum.

We investigate multilayer perceptrons to reconstruct compressive hyperspectral images. The input layer maps
the compressed input signal to 220 outputs, with ReLU activation. Then K hidden, fully-connected layers follow,
each with ReLU activation. The last layer is linear and outputs the reconstructed spectrum. Applications in
video compression have utilized multilayer perceptrons for reconstructing compressive sensing measurements.”

In our experiments, we vary the number of hidden layers: K = 1,2,4,7,14. The multilayer perceptron
iterates over each pixel to reconstruct the entire hyperspectral image.

2.3 Task 2: Classification of compressive hyperspectral images

Evaluate classifier performance on compressed inputs

This task aims to answer the questions

e Can neural networks improve classification accuracy for hyperspectral images, either from compressed
measurements or reconstructed spectra, compared with traditional classifiers like support vector machines?



e How does classification performance compare using compressed measurements as input, versus using re-
constructed spectra as input?

We evaluate a variety of classifiers: support vector machines, K nearest neighbors, and three different neural
networks, as described below. The input size varies from 160, 80, 40, 20, to 10 measurements, which are less
than the full size of 220 bands.

3D convolutions extract spatial and spectral features

We consider two different 3D convolutional neural networks (CNNs). The first 3D CNN extracts blocks of
size 5 x 5 x I, where I is the input size, which varies from 220, 160, 80, 40, 20, to 10 in our experiments. Then
two convolutional layers follow, with sizes of 3 x 3 x 7 and 3 x 3 x 3, respectively, each followed by ReLLU. Next a
fully connected layer reads a flattened feature vector and outputs a feature vector with the classification scores
for the 16 classes. We train the model with Adagrad and cross-entropy loss. We refer to Li'® for more details.

The second model is a multiscale 3D CNN. The input patch has size 7 x 7 x I, where I is defined above. It
passes through a convolutional layer with 16 3 x 3 x 11 kernels, followed by ReLLU. A special layer consists of 16
parallel 3D convolution blocks, each of sizes 1 x 1 x1,1x1x3,1x1x5,and 1x1x 11, which are summed and
passed through ReLLU. A second, identical parallel layer follows. Next is a convolutional layer with 16 kernels of
size 2 x 2 x 3, followed by ReLU, 2 x 2 x 3 pooling, and dropout. A fully connected layer outputs a score for
each class. We refer to He'! for more details.

Previous approaches have applied principle components analysis to the spectral dimension, independently of
the spatial dimension. Performing convolutions in 3D can simultaneously extract spatial and spectral features.

Recurrent networks characterize spectral correlations

The input to the recurrent neural network (RNN) is a hyperspectral pixel. The recurrent layer reads one
band, while the next band is input simulataneously. The RNN predicts the label of the pixel after looping
through the entire hyperspectral pixel sequence. We consider a model with gated recurrent units of size 64,
followed by batch norm and tanh activation. A final fully connected layer outputs scores for each class. Note
that this model considers spectral correlations but not spatial relations between neighboring pixels. We refer to
Mou'? for more details.

3. RESULTS
3.1 Task 1: Reconstruction of compressive hyperspectral images
Moderate compression (160 / 220) results in small reconstruction error

For Task 1, we study the reconstruction error as the number of measurements decreases from 160, 80, 40,
20, to 10, and the reconstructed spectra has 220 bands. The error also depends on the number of layers in the
multilayer perceptron. Figure 5a shows examples of reconstructions with 160 measurements using a single layer
perceptron. Both the Indian Pines and random spectra resemble ground truth closely at a moderate compression
ratio (160 measurements of 220 bands).

Larger compression (10 / 220) results in larger reconstruction error

Figure 5b shows examples of reconstructions with 10 measurements using a single layer perceptron. The error
increases in both datasets: the random spectra shows the most error in the higher frequencies, and the Indian
Pines dataset shows some bias in bands 0-30 and artifacts near the water absorption region near band 130. As
expected, a larger compression (10 measurements of 220 bands) results in larger reconstruction errors.



Example Reconstructions, Input size: 160, Layers: 1
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(a) Reconstruction from 160 measurements.
Figure 5: Example reconstructions from varying numbers of measurements with a single layer perceptron.
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Figure 6: Reconstructions of each class/crop from 10 measurements using a single layer perceptron, after running
2000 epochs. The plots show the average spectra with confidence intervals of one standard deviation, which shows
intraclass variation. GT: Ground Truth. NN: Single layer perceptron.

Figure 6 shows the reconstruction distribution of the Indian Pines classes from 10 measurements using a single
layer perceptron, after running 2000 epochs. The plots show the average spectra of each class with confidence
intervals of one standard deviation, which indicates intraclass variation in reconstruction error.



Overall R? shows too many layers increases error

Figures 7a and 7b show the overall R? with standard deviation as a measure of similarity of the reconstruction
with the ground truth. The heatmap illustrates the reconstruction quality as the number of measurements and
the number of layers vary. Note the training, validation, and testing sets remain fixed, and the standard deviation
measures the variation in error over the entire testing set. If the number of layers is too large (e.g. 14 layers),
the model begins to memorize the waveforms in the training set and does not generalize well to the testing set.
Consequently, the overall R? degrades compared to models with fewer layers.

Single layer shows least overfitting

Figures 7c and 7d show R? with standard deviation over the Indian Pines dataset, excluding the random
spectra dataset. Figures 7e and 7f show R? with standard deviation over the random spectra dataset, excluding
the Indian Pines dataset. A high R? value in one dataset may indicate overfitting if the other dataset has a
corresponding low R?. For example, when the number of layers is 2, 4, and 7, the Indian Pines R? is relatively
high for 10 measurements, but the corresponding R? over the random spectra dataset is much lower. We find that
the single layer perceptron shows the least overfitting based on comparing R? values between the two datasets.

Regularize the model to further reduce overfitting

Regularization may help to reduce overfitting on the Indian Pines dataset. For example, dropout may be
added to the multilayer perceptron. Other random spectra or additive noise may further augment the training
dataset. Comparing the reconstruction of the random spectra with the Indian Pines dataset helps to measure
how much the model overfits one dataset compared to the other.

3.2 Task 2: Classification of compressive hyperspectral images

Recurrent networks perform best on compressed inputs

We split the Indian Pines dataset into training, validation, and testing according to 60/20/20 proportions.
All the experiments below use the same split throughout. The standard deviation in the accuracies reflect the
variance caused dropout in the neural networks.

Figure 8 shows the overall accuracy with varying input size from 220, 160, 80, 40, 20, to 10 measurements.
Note the number of measurements is less than or equal to the number of bands B in the hyperspectral image
(B = 220 corresponds to the full or uncompressed spectral input). The heatmap compares different classifiers:
support vector machines (SVM), K nearest neighbors (KNN), and three types of neural networks as described
in Section 2.3. For SVM on compressed inputs, we use a radial basis function (RBF) kernel with C' = 1000 and
v = 0.001, as determined by grid search. For KNN, we search over K = 1,3,5,10,20. In most cases, K = 10
performed best (e.g. for compressed sizes of 10 and 160).

The recurrent neural network (RNN) from Mou'? performs the best on compressed inputs. Figure 9 shows
the average class accuracies using the RNN from Mou.

3D CNNs perform best on reconstructed spectra

We test classifier performance on reconstructed inputs as a comparison with the compressed inputs. Figure 10
shows the classifiers’ accuracies with varying numbers of measurements. The compressed signal length denotes the
number of measurements used to reconstruct the hyperspectral images. The number of bands in the reconstructed
hyperspectral image is 220, and this reconstructed image is the input to the classifiers. We use the single layer
perceptron to calculate the reconstructed spectra, since it shows the least overfitting. Each model runs 20 times,
with 100 epochs per run.

The multiscale 3D CNN from He performs the best over reconstructed inputs, based on the comparison from
Fig. 10. Figure 11 shows the class accuracies on the reconstructed inputs using the multiscale 3D CNN from
He.!! Note that the values at 220 are empty in the table since the original signal length is 220.



Accuracy improves on reconstructed inputs

Figure 12 compares the accuracy of four different classifiers: support vector machines, K nearest neighbors,
the RNN from Mou, and the multiscale 3D CNN from He. Each plot compares two inputs to the classifier:
the compressed (non-reconstructed) measurements, and the reconstructed spectra. Note that the reconstructed
spectra has full size (220 bands), and the x-axis denotes the number of compressed measurements before recon-
struction. The size of 220 corresponds to the full spectral input to the classifier. Each model runs 20 times with
100 epochs per run.

The compressed input may lose spatial context, so 3D convolutions may not be as effective. Neighboring
pixels that share the same class may look different in compressed space. Compressive sensing can be an unstable,
underdetermined inverse problem, where the number of measurements can be far less than the size of the signal to
be reconstructed. As a result, the classifiers that do not account for spatial context perform better on compressed
inputs, or the performance is comparable to reconstructed inputs. For example, support vector machines and
the RNN from Mou only consider spectral correlations.

Classifiers that consider both spatial and spectral correlations, such as KNN or 3D CNNs, perform better
on the reconstructed spectra, which more closely resemble physical signals. These classifiers exhibit a large
divergence between reconstructed and compressed inputs, which indicates that the compressed inputs provide
poor spatial context for these algorithms. The single layer perceptron from Task 1 produces fairly accurate
reconstructions even with large compression ratios, boosting performance on Task 2.

4. SUMMARY

Neural networks can reconstruct and classify compressive hyperspectral images

We have demonstrated a two step process for hyperspectral image classification using compressive sensing
measurements. The first step is to reconstruct the hyperspectral image from compressive sensing measure-
ments. We investigated varying the number of layers in a multiayer perceptron and found that a single layer
minimizes overfitting. The second step is to classify the reconstructed image. We compared support vector
machines, K nearest neighbors, and three neural networks (3D CNNs, multiscale 3D CNNs, RNNs). Classifier
accuracy improves using reconstructed spectra compared to raw compressed measurements. This work shows
how neural networks can reconstruct and classify compressive hyperspectral images, which reduces the number
of measurements and speeds acquisition time.
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Figure 7: R? for reconstructions over two datasets (Indian Pines and random spectra).
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Figure 8: Comparison of classifier accuracy with varying numbers of measurements (compressed signal length).
The inputs to the classifiers are the compressed (non-reconstructed) measurements. The number of bands in the
hyperspectral image is 220, and the compression ratio is the number of measurements divided by the number of
bands. Note that the 3D CNN from He does not accept inputs of size 10, so these values are empty. Each model
runs 20 times, with 100 epochs per run.
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neural network from Mou. The inputs to the classifier are the compressed (non-reconstructed) measurements.
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Figure 10: Comparison of classifier accuracy with varying numbers of measurements (compressed signal length).
The inputs to the classifiers are the reconstructed hyperspectral images. The compressed signal length denotes the
number of measurements used to reconstruct the hyperspectral images. The number of bands in the reconstructed
hyperspectral image is 220. Each model runs 20 times, with 100 epochs per run.
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scale 3D convolutional neural network from He. The inputs to the classifiers are the reconstructed hyperspectral
images. The number of bands in the reconstructed hyperspectral image is 220. The compressed signal length
denotes the number of measurements used to reconstruct the hyperspectral images, so the values at 220 are
empty in the table since the original signal length is 220.
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Figure 12: Accuracy comparison of four different classifiers. Each plot compares two inputs to the classifier:
the compressed (non-reconstructed) measurements, and the reconstructed spectra. Note that the reconstructed
spectra has full size (220 bands), and the x-axis denotes the number of compressed measurements before recon-
struction. The size of 220 corresponds to the full spectral input to the classifier. Each model runs 20 times with

100 epochs per run.



APPENDIX A. ADDITIONAL RECONSTRUCTION METRICS

This appendix presents other metrics, in addition to R?, for reconstructing hyperspectral images from compressive
sensing measurements. The mean squared error (MSE) is another way to measure the difference between the
reconstructed spectra and ground truth. Figure 13 shows the average MSE for both datasets, while Fig. 14
shows the average MSE for each dataset separately (Indian Pines and random spectra).

Average MSE Standard deviation MSE

-0.60

-0.60
Sl 3.6¢-01 | 3.3¢-01 [ 3.5e-01 | 3.7¢-01 [EFHENII £ o |5.0e-01 5.1e-01  5.1e-01 5.1e-01 6.2¢-01
o o
C c
2 -0.45 2
PRg 20°-01 | 1901 | 2701 | 37e-01 | 41601 : PRy 40201 | 3.9¢-01 [ 3.7e-01 | 3.6e-01 [RXT 0.45
o~ o~
c c
=) o)
()] 0
[l 7.6e-02 | 7.6e-02 | 8.2e-02 | 1.3e-01 | 3.5e-01 [l 1.8e-01 | 1.8e-01 | 2.0e-01 | 2.3e-01
-8 030 5% 0.30
()] ()]
0 0
8 [l 3.5¢-03 | 4.0e-03 | 4.4e-03 | 6.1e-03 [ESIPA=Sekk 8 el 7.7¢-0 e-03 e-03 | 1.3e-02 PL=Sk)
a® 015 g% 0.15
£ £
80 2.3e-02 | 9.0e-04 | 1.5e-03 | 2.7e-03 RSNk 80 2.8e-02 | 2.1e-03 | 2.8e-03 | 4.7e-03 HEIEeE
[(e} [(e]
— —
1 2 4 7 14 1 2 4 7 14
Number of layers Number of layers

(a) Average MSE over both datasets (Indian Pines and ran- (b) Standard deviation of the MSE for both datasets.
dom spectra).

Figure 13: Mean squared error (MSE) in the reconstruction with varying input size and number of layers in the

perceptron. The training/validation/testing split is fixed at 60/20/20, and the standard deviation measures the
variance across all spectra in the testing set.
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Figure 14: Mean squared error (MSE) for each dataset with varying input size and number of layers in the
perceptron. The training/validation/testing split is fixed at 60/20/20, and the standard deviation measures the
variance across all spectra in the testing set.



APPENDIX B. ADDITIONAL CLASSIFICATION METRICS

This appendix presents other classification metrics, in addition to overall accuracy, for classifying compressive
hyperspectral images. The average accuracy is an average of the class accuracies. Figure 15 shows the average
accuracy from two types of inputs: either compressed measurements or reconstructed spectra. Figure 16 shows
the average kappa for these two types of inputs. Both figures compare different classifiers over a varying number

of measurements.
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Average accuracy: Reconstructed input
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(c¢) Average accuracy from classifying reconstructed spectra. (d) Standard deviation of average accuracy from classifying

reconstructed spectra.

Figure 15: Average accuracy of classifying compressive hyperspectral images. The training/validation/testing
split is fixed at 60/20/20, and the standard deviation measures the variance of the models that use dropout.
Each input (either compressed measurements or reconstructed spectra) compares different classifiers and varying
input sizes. The reconstructed spectra have 220 bands, and the input size denotes the number of measurements

before reconstruction.
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(¢) Average kappa from classifying reconstructed spectra. (d) Standard deviation of kappa from classifying recon-
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Figure 16: Average kappa from classifying compressive hyperspectral images. The training/validation/testing
split is fixed at 60/20/20, and the standard deviation measures the variance of the models that use dropout.
Each input (either compressed measurements or reconstructed spectra) compares different classifiers and varying
input sizes. The reconstructed spectra have 220 bands, and the input size denotes the number of measurements
before reconstruction.
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