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exposed acid gas

Mission
The mission of the Energy Frontier Research
Center is to develop a deep knowledge base in Short-tem exposure Long-tem exposure

the characterization, prediction, and control of
acid-gas interactions with a broad class of

materials to accelerate materials discovery for
large-scale energy applications.
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3 I Rare Earth — MOFs, Acid Gas Durability

Rare earth elements have been shown to preferentially bind to acid gases:

Optimization of binding to framework but not too strong as to be destructive

• Lanthanide oxygen-sulfur catalysts (Kay et.al, US Patent 5,213,779 (1993))
• Metal organic coordination polymers with Tb3+ have a strong affinity and coordination binding to

H2S (Anal. Chem, 2013, 85,22,11020)
• Europium has high selectivity for hydrogen sulfide (Dalton Trans., 2016, 45, 928)

Leveraging off our group's work on RE-DOBDC: platform based on
building block, akin to prototypical Zr-Hexanuclear cluster

Resultant RE-DOBDC MOFs
• Octahedral cages of —14A diameter
• Accessible via triangular windows of —5.5A
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4 1 Material Structure of Currently Synthesized
Rare Earth MOFs

(a)

RE-DOBDC MOF
Unit Cell = RE12(µ3-0H)16(C806H4)8(C806H5)4 + 12 H20

RE = Y, Eu, Tb, Yb
DOBDC = 2,5-dioxido-1,4-benzenedicarboxylate

Sava Gallis et al. ACS Appl. Mater. Interfaces 2017
Sava Gallis et al. CrystEngConvn 2018
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5 I Why do we want to investigate Rare Earth MOFs?

Gas Adsorption:
• Controlled coordination allowing synthesis of isostructural materials to probe metal-

guest (NO„, SOO energetics
• Structural advantages: formation of mesoporous RE-MOFs through ligand extensions,

multiple coordination environments in one structure

Sensing:
• Luminesce from 4f-4f and 4f-5d transitions or

ligand to metal charge transfer (LMCT) or metal-
ligand charge transfer (MLCT)
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1 Computational Set-Up
6

Unit Celli = RE12(µ3-0H)16(C806H4)8(C806H5)4 + 12 H20 RE = Y, Eu, Tb, Yb

Vienna ab initio Simulation Package
PBEsol exchange correlation functional
DFT-D3 used for vdW interactions
Gamma point calculation

Geometric Structures: Spin-restricted with large core potential (LCPs)
Binding Energies:  Spin unrestricted DFT with LCPs
Electronic Structure:  Spin-unrestricted DFT with full 4f Valence
Potential + U*

Sava Gallis et al. ACS Appl. Mater. Interfaces 2017; Harvey et al. J. Phys. Chem. C 2018
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7 I Optimized Lattice Parameters and Pair
Distribution Function

Primary Peaks of Interest are RE-O
and RE-RE
Consistent peak shifts due to
lanthanide contraction
Experimental peaks:

• RE-0: -2.5 A
• RE-RE: -4 A

Lattice parameters shift from
tetragonal symmetry is due to flexible
organic structures.

RE-DOBDC RE-0 Pair Distribution (RE.Eu,Tb,Y13,Y)

2

RE
Lattice Pararneters

a (A) b (A) c (A) a(°) 16(°) y(°)
Volurne

(A3)
Eu 15.55 15.63 21.24 90.03 89.96 89.94 5162.76

Tb 15.44 15.46 21.12 89.97 89.92 89.88 5042.38

Yb 15.26 15.31 20.85 89.95 89.96 89.95 4870.09

Y 15.40 15.41 21.06 89.96 89.89 89.88 4997.20
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8
Calculated Gas Adsorption Binding Energies
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• Three different gases considered: H20,
NO2, S02 (one molecule at a time)

• Similar strong preference for H20 and
SO2

• Different selectivity for H20 v. NO2
NOx not as strongly bound,
possible preferential ad-/desorption
material

• Metal center of MOF may play an added
role in gas adsorption strength

THE UNIVERSITY OF

Gas Interaction EnerA k /mol
Rare Earth Element

Y Eu Tb Yb
-101.59
-73.23
-100.50

-100.91 -101.90 -106.45
-75.64 -75.69 -72.82
-104.95 -101.98 -103.20
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9 I Luminescence following H20 and NO2 exposure

UV light

UV light

tri
NUM

644 US.

Experimental Methods:
• NOx stream 50 ppm, RH 60%) generated in an adsorption chamber at room temperature
• Gas concentration was monitored with NOx and H20/humidity sensors
• PL emission and excitation spectra of powder samples were collected by monitoring at the peak of the emission

and scanning over UV-visible wavelengths (320-550 nm).
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10 Adsorption of Y-DOBDC with H20 and NO2
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Calculated absorption spectra
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Wavelength, nm
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'ransition Dipole: go_pii. e f (pal( pSi* (p0_ 1(psidi'

r 3he2 4"eva'jj
Oscillator Strength: f„,ij =

Absorption: a, = E,pij f6,jj6(E — AE,,ii)

• Experimental PL spectra indicates that the primary emission energy range is between
400-650 nm -> transitions within the organic DOBDC linkers

• Calculated absorption shows good qualitative agreement for the Y-DOBDC systems,
due to distribution of transitions between 400-650 nm
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Change in adsorption with
NO2 is due to additional
transitions at 460 nm
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Wavelength, nm
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Y-DOBDC + H29 Y-DOBDC + NO2
Transition
Label fi; wii(rim)

Transition
Label fi; wiJ(nm)

A 13.93 529 A 11.22 461
B 10.06 528 B 10.69 506
C 5.98 467 C 10.23 511
D 5.29 507

D
5.48 530

E 3.80 532 5.25 304

F
3.59 513 E 4.94 499
2.54 325 F 3.80 509

G

2.40 509
G

3.49 491
2.22 346 3.19 299

2.21 292 H 3.01 464
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1 2 1 Transition States in Y-DOBDC with Adsorbed
H20 or NO2

• Energy states from the NO2 molecule are
within the energy range of the DOBDC
transition states.

• NO2 adsorption introduces unoccupied states
at the valence band edge of the Y-DOBDC
system with new low energy transitions
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1 Conclusions
13

Density functional theory calculations are used to design improved MOFs for
acid gas adsorption and separation.

For RE-DOBDC (RE=Y, Eu, Tb, Yb) gas adsorption is preferential for S02 >
H20 > NO2, where S02 and H20 are very competitive.

Adsorption of gas molecules, provide unique electronic structures allowing
new electronic relaxation pathways to exist.

Adsorption of NO2 in Y-DOBDC induces a reduced PL intensity.

Calculated DOS with NO2 adsorbed show new unoccupied states in the
valence band and a redistribution of state energies at the band edges.
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