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Mission
The mission of the Energy Frontier Research
Center is to develop a deep knowledge base in
the characterization, prediction, and control of
acid-gas interactions with a broad class of
materials to accelerate materials discovery for
large-scale energy applications.
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. | Rare Earth — MOFs, Acid Gas Durability

Rare earth elements have been shown to preferentially bind to acid gases:

Optimization of binding to framework but not too strong as to be destructive

* Lanthanide oxygen-sulfur catalysts (Kay et.al, US Patent 5,213,779 (1993))

*  Metal organic coordination polymers with Tb3" have a strong affinity and coordination binding to
H,S (Anal. Chem, 2013, 85,22,11020)

e Europium has high selectivity for hydrogen sulfide (Dalton Trans., 2016, 45, 928)

Leveraging off our group’s work on RE-DOBDC: platform based on /£
building block, akin to prototypical Zr-Hexanuclear cluster :

Resultant RE-DOBDC MOFs
 Octahedral cages of ~14A diameter
« Accessible via triangular windows of ~5.5A

Sava Gallis, et.al., J. Phys. Chem. C 2018,
From Zr UiO-66 structure data:

Trickett et al. Angew. Chem. Int. Ed. 2015
Ling and Slater Chem. Sci. 2016
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Material Structure of Currently Synthesized
Rare Earth MOFs

RE-DOBDC MOF

RE =Y, Eu, Tb, Yb
DOBDC = 2,5-dioxido-1,4-benzenedicarboxylate

Sava Gallis et al. ACS Appl. Mater. Interfaces 2017
Sava Gallis et al. CrystEngComm 2018
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Why do we want to investigate Rare Earth MOFs?

Gas Adsorption:
* Controlled coordination allowing synthesis of isostructural materials to probe metal-

guest (NO,, SO,) energetics
» Structural advantages: formation of mesoporous RE-MOFs through ligand extensions,

multiple coordination environments in one structure

Sensing:

* Luminesce from 4f-4f and 4f-5d transitions or
ligand to metal charge transfer (LMCT) or metal-
ligand charge transfer (MLCT)
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‘.' d ‘_»7 2

-OH),(Cs04H,)s(CsO.Hs), + 12 HLORE =Y, Eu, Tb, Yb
Vienna ab initio Simulation Package Geometric Structures: Spin-restricted with large core potential (LCPs)
PBEsol exchange correlation functional Binding Energies: Spin unrestricted DFT with LCPs
DFT-D3 used for vdW interactions Electronic Structure: Spin-unrestricted DFT with full 4f Valence
Gamma point calculation Potential + U*

Sava Gallis et al. ACS Appl. Mater. Interfaces 2017; Harvey et al. J. Phys. Chem. C 2018
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I Optimized Lattice Parameters and Pair
Distribution Function

RE-DOBDC RE-O Pair Distribution (RE=Eu,Tb,Yb,Y)

Primary Peaks of Interest are RE-O o« X AL T &
and RE-RE e ;ﬂ. M
= C = 3o 2 l."
Consistent peak shifts due to _efte );,‘ E
lanthanide contraction = : 3
. 15 { |
Experimental peaks: 0
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Distance, A
Lattice Parameters @ o | .9 . 9
RE o o o | Volume Fodyas @ ot ’ g'ﬁ'm- % -.,;v;f’:'ié
a(d) | bA) | c® | @) | BO | O | iy | Sl | g™
B s,g-,.l % b g,
Eu | 1555 | 1563 | 21.24 | 90.03 [ 89.96 | 89.94 [5162.76 WIS W
Tb | 1544 | 1546 | 21.12 | 89.97 | 89.92 | 89.88 [5042.38 <P = e R ——
yb | 1526 | 1531 [ 2085 | 89.95 | 89.96 | 89.95 |4870.09
Y 1540 | 1541 | 21.06 [ 89.96 | 89.89 | 89.88 [4997.20
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Binding Energy, kJ/mol

Calculated Gas Adsorption Binding Energies

RE-DOBDC MOF Binding Energies
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» Three different gases considered: H,O,
NO,, SO, (one molecule at a time)

» Similar strong preference for H,O and

SO,

= Different selectivity for H,O v. NO,
NOXx not as strongly bound,
possible preferential ad-/desorption
material

= Metal center of MOF may play an added

role in gas adsorption strength

Y

Rare Earth Element
Eu Tb
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‘ Luminescence following H,O and NO, exposure

YDOBDC before NOxexposure
| UV light : YDOBDC emission 350 nm
4 e (=111
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Experimental Methods:

¢ NO, stream (~ 50 ppm, RH 60%) generated in an adsorption chamber at room temperature

¢ Qas concentration was monitored with NOx and H,O/humidity sensors

* PL emission and excitation spectra of powder samples were collected by monitoring at the peak of the emission
and scanning over UV-visible wavelengths (320-550 nm).
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Adsorption of Y-DOBDC with H,O and NO,
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* Experimental PL spectra indicates that the primary emission energy range is between
400-650 nm -> transitions within the organic DOBDC linkers

* Calculated absorption shows good qualitative agreement for the Y-DOBDC systems,
due to distribution of transitions between 400-650 nm
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Y-DOBDC + H20

Y-DOBDC + NO2
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Y-DOBDC + H,0 Y-DOBDC + NO,
Transition Transition
Label fij Wij (nm) Label fij Wij (nm)
_ _ . A 13.93 529 A 11.22 461
Change in adsorption with B 10.06 528 B 10.69 506
NO, is due to additional C 5.98 467 C 10.23 S11
2°° D 5.29 507 n 5.48 530
transitions at 460 nm E 3.80 532 5.5 304
F 3.59 513 E 4.94 499
2.54 325 F 3.80 509
2.40 509 & 3.49 491
G 222 346 3.19 299
221 202 H 3.01 464
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Transition States in Y-DOBDC with Adsorbed

12

H,O or NO,

* Energy states from the NO, molecule are
within the energy range of the DOBDC
transition states.

* NO, adsorption introduces unoccupied states

at the valence band edge of the Y-DOBDC
system with new low energy transitions

Activated vs NO2 Y-DOBDC
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NO, 502 nm 461 nm
H,O 520 nm 467 nm
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Conclusions

Density functional theory calculations are used to design improved MOFs for
acid gas adsorption and separation.

For RE-DOBDC (RE=Y, Eu, Tb, Yb) gas adsorption is preferential for SO, >
H,O > NO,, where SO, and H,O are very competitive.

Adsorption of gas molecules, provide unique electronic structures allowing
new electronic relaxation pathways to exist. I

Adsorption of NO, in Y-DOBDC induces a reduced PL intensity.

Calculated DOS with NO, adsorbed show new unoccupied states in the
valence band and a redistribution of state energies at the band edges.
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