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2 A Classic Johnson-Cook Model

Based on scaling
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A general practice:

• Use very low rate data as a reference strain rate (isothermal condition)

• Room-temperature tests at various strain rates

• Quasi-static tests at various temperatures

To Room temperature

T Melting temperature

Johnson GR, Cook WH (1983) A constitutive model and data for

metals subjected to large strains, high strain rates and high

temperatures. In: Proceedings of the 7th International Symposium

on Ballistics, The Hague, The Netherlands, pp.541-7.



3 1 Revisit of Classic Johnson-Cook Model — Strain Rate Effect
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At e =0 s is plastic strain

A represents yield strength

T =To No temperature rise
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Strain rate effect linear to logarithm of strain

rate, which may not be true for many materials.
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Lower yield stress vs. strain-rate (Ta)
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4 Revisit of Classic Johnson-Cook Model — Adiabatic Thermosoftening

T
a = (A + B • en)• (1+ C •lnn) 1 Implicit to Strain and Strain Rate

Determination of Temperature Rise

Fraction of Plastic Work
Converted to Heat

Is temperature effect independent of

=>. Determination of Thermosoftening
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5 I Proposed Modification of J-C Model with Explicit Thermo-softening

= + B • en ) • f (Z.) •g(g,e)
1  m

An explicit description of strain and

strain-rate-dependent thermo-softening
A better description of strain-rate effect

• A power-law form

✓ Zerilli and Armstrong, 1987

✓ Litonski 1977

✓ Vinh et al. 1979

✓ Klopp et al. 1985

f(E) =
(

f (0=21 =1+C•ln

St
ra

in
 R
a
t
e
 S
tr

en
gt

hi
ng

 F
ac

to
r 

0.9

io-4 lo-3 10-2 10-1 10° 101

Strain Rate (s-1)

102 103 104



T
r
u
e
 s
tr
es
s 
(M

1,
,a

) 

6 I Proposed Modification of J-C Model —Thermo-softening

Zhang et al. (2015) The constitutive responses of Ti-6.6A1-3.3Mo-1.8Zr-
0.29Si alloy at high strain rates and elevated temperatures, Journal of
Alloys and Compounds, 647:97-104.
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7 1 Taylor-Quinney Coefficient

Phenomenological TQ Coefficient, p

1
Plastic Work, W

T Coefficient, po

Heat, Q  ► Heat for Temperature Rise, AT

Heat Transfer, QT
Internal Energy (conduction, convection, radiation)

Taylor-Quinney coeffident
a — dO

Po 
Ai/ 0% Heat for specimen temperature rise 1 00%

AT =T -To =Q QT = leo • W QT — A • 1 ad g QT
_

PO * cv PO * Cv PO * Cv

Phenomenological Fraction of plastic work

converted to heat

16. i47 fljade
AT =T -T0= 

/00 • Cv po • Cv

Isot_

1

ermal *tic I

1 00% Heat Transfer (conduction in majority) ()%

Farren WS, Taylor GI (1925) The heat developed during plastic extension of metals,

Proc. Royal Soc., pp423-451.

Taylor GI, Quinney H (1934) The latent energy remaining in a metal after cold

working, Proc. Royal Soc., pp307-326
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8 1 Taylor-Quinney Coefficient

Phenomenological TQ Coefficient, p

1

Plastic Work, W
T Coefficient, po

Heat, Q  ► Heat for Temperature Rise, AT

Heat Transfer, QT
Internal Energy (conduction, convection, radiation)
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9 I Determination of Temperature Rise with Taylor-Quinney Coefficient

Po • ad g -QT ade
AT =T -TO =  

po • C, po • c

0“3/30 1

fi is easier than A due to unknown heat

transfer at lower strain rates.
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10 I Boltzmann Description of Taylor-Quinney Coefficient

Zhang T, Guo Z-R, Yuan F-P, Zhang H-S (2018) Investigation on the plastic work-heat conversion coefficient of 7075-T651 aluminum alloy during an impact process

based on infrared temperature measurement technology, Acta Mech Sinica, 34:327-333.
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11 I Proposed Modification of J-C Model

a =(A+B•en)• f (e)•g(g,e)

Power-law Strain-rate Effect
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12 I Determination of Strain-Rate-Effect

Constant strain rates are

preferred. However, in

reality, it takes time/strain

for strain rate to ramp up.

Song B, Sanborn B, Heister JD, Everett RL, Martinez TL, Groves

GE, Johnson EP, Kenney DJ, Knight ME, Spletzer MA, Haulenbeek

KK, McConnell C (2019) An apparatus for tensile characterization

of materials within the upper intermediate strain rate regime, Exp

Mech, D01:10.1007/s11340-019-00494-3.
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13 Modified J-C Model for 304L Stainless Steel
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Song B, Sanborn B, Heister JD, Everett RL, Martinez TL, Groves GE, Johnson EP, Kenney DJ, Knight ME, Spletzer MA, Haulenbeek KK, McConnell C (2019) An
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apparatus for tensile characterization of materials within the upper intermediate strain rate regime, Exp Mech, DOI:10.1007/s11340-019-00494-3.



14 I Modified J-C Model for A572 Steel
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Sanborn B, Song B, Thompson A, Reece B, Attaway S (2017) High strain rate tensile response of A572 and 4140 steel, Proc Eng, 197:33-41.



15 I Modified J-C Model for 4140 Steel
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Sanborn B, Song B, Thompson A, Reece B, Attaway S (2017) High strain rate tensile response of A572 and 4140 steel, Proc Eng, 197:33-41.



16 Bridgman Correction for True Stress-Strain Response During Necking

• True strain
Ao

ET = ln
A

• Average true axial stress at the smallest

cross section
F A0

(6a)av = A = aE A

• Uniaxial stress correction

67' = k(Uct)av

)
k =1 +

2R 

a

-1

ln (1 + cl2R
• Requires instantaneous measurements of

minimum cross sectional area, A, and

radius, R.



17 I Modified J-C Model for True Stress-Strain Response During Necking
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Song, B., Sanborn, B., Thompson, A., Reece, B., Attaway, S., and

Teeter, R., High strain rate tensile response of A572 and 4140 steel, In:

2017 ASME International Mechanical Engineering Congress &

Exposition (IMECE), November 3-9, 2017, Tampa, FL



18 I Conclusions

• The Johnson-Cook model was modified with

• power-law strain rate effect

• explicit strain- and strain-rate-dependent thermosoftening using

• a Boltzmann description of phenomenological Taylor-Quinney Coefficient
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• The modified Johnson-Cook model was tested for three different materials — 304L

stainless steel, A572 and 4140 steels
• the model described the tensile stress-strain response prior to necking better than that

during necking

• Description of strain rate effect

• Uncertainties of Bridgman correction


