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2 I A Classic Johnson-Cook Model

Based on scaling

; , , . . T=T 1, Room temperature
0:(A+B-5 )-(1+C-lng)-[1—T } T =__"0
l m 10 I’ Melting temperature
Work Hardening
\ 4
Strain-rate
Strengthening
v v
Temperature “Temperature Rise” due to
Effect “adiabatic heating”
. . " .
“Adiabatic Thermo-softening”
A general practice: Johnson GR, Cook WH (1983) A constitutive model and data for
" Use very low rate data as a reference strain rate (isothermal condition)  metals subjected to large strains, high strain rates and high
» Room-temperature tests at various strain rates temperatures. In: Proceedings of the 7% International Symposium

. . . on Ballistics, The Hague, The Netherlands, pp.541-7.
= (Quasi-static tests at various temperatures



3 I Revisit of Classic Johnson-Cook Model — Strain Rate Effect

0=(A+B-g”)[(1+C’-lné)] -] —%

At e =0 g 15 plastic strain
A represents yield strength

1l = To No temperature rise

02A-(1+C'-1né‘)=14' 1+C'1n.£
€

Strain rate effect — linear to logarithm of strain
rate, which may not be true for many materials.

TRUE STRESS, MPa

700 ——rrrrre : T r
D —
A _l;.@f - »
600 e — N g -
A — a1 . —
e —— Xl e J
o B e 04 ST,
§ &
- 400
e |
E
37 oo
@ ¥ -5 -————""‘.-"'_-—-—_ .
20 -—_"_’_._______;__y_y-— P
= I DR Sl e M
-_-:- """ '5:3&_;----—“‘"'
) . QFHG_SQUPER. y
o o aand el g caaaal aaasanl s aad
.00l .01 . 1 10 100 1000
SHEAR STRAIN RATE, ¥ (5°1)
Johnson and Cook, 1983.
Lower yiéld strass v, strain~rata (Ta)
* 0 Hoge and Mukherjee, 298 K
800 - a Mitchelland Spitzig, 373 K /,Ja
5
~——= Zerilli~ Armstrong, 298 K K
» True strain= 0.014 /’ 7
Tg = 30 MPa a=0.44 s
4001~ ¢ «u25mPo i =
C3 *0.00535K"! Vv
= C4 =0.000227 K" 4 B
Cs * 3I0MPa e
200 ot —
_ oz’ =——Zerilli-Armstrong
. I o True strain = 0.000-
i Og = O MPa

1s) =,-_-.-;&.-- 8 I 1 | L 1 1
0

2 4

M. Meyers, Dynamic Behavior of Materials, 1994.



4 | Revisit of Classic Johnson-Cook Model — Adiabatic Thermosoftening

o= (A +B-&" ) : (1 +C"-In 6‘) 1- [(]} 2 Implicit to Strain and Strain Rate

Fraction of Plastic Work
Converted to Heat

Is temperature effect independent of
strain rate?

Adiabatic/Heat Transfer




5 | Proposed Modification of |-C Model with Explicit Thermo-softening

oc=(4+B-&")- f(£) g(&,¢)

l

A better description of strain-rate effect

% A power-law form

v Zerilli and Armstrong, 1987 p @
v Litonski 1977 f(g) =A==
v" Vinh et al. 1979 &

v" Klopp et al. 1985

!

An explicit description of strain and
strain-rate-dependent thermo-softening
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6 | Proposed Modification of |-C Model — Thermo-softening

Zhang et al. (2015) The constitutive responses of Ti-6.6Al-3.3Mo-1.8Z¢-

0.29S1 alloy at high strain rates and elevated temperatures, Journal of

Alloys and Compounds, 647:97-104.
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Taylor-Quinney Coefficient

Phenomenological TQ Coefficient,

Plastic Work, W > Heat, Q

TQ Coefficient, B,

Internal Energy

o
/4

Taylor-Quinney coefficient [5, = r

- W — B | ode—
AT:T_T('):Q QT:ﬂO 4 QT: 0 j QT
pO.CV lOO.Cv pO.CV
Phenomenological Fraction of plastic work
converted to heat

B-W :ﬂ-jadg

AT =T-T, =
pP-C PG

’
> Heat for Temperature Rise, AT ‘

Heat Transfer, Q
(conduction, convection, radiation)

0% Heat for specimen temperature rise  100%

B Y

100% Heat Transfer (conduction in majority) 0%

Isothermal

Farren WS, Taylor GI (1925) The heat developed during plastic extension of metals,
Proc. Royal Soc., pp423-451.

Taylor GI, Quinney H (1934) The latent energy remaining in a metal after cold
working, Proc. Royal Soc., pp307-326



Taylor-Quinney Coefficient

Phenomenological TQ Coefficient,

| !
Plastic Work, W > Heat, Q > Heat for Temperature Rise, AT ‘
TQ Coefficient, B,
Heat Transfer, Q;
Internal Energy (conduction, convection, radiation)
0-0. B, -W-0, 5, -jadg—QT Isothermal: O, =0=/f,-W
AT =T-1,= = =

_po'Cv_ PG, B PG, t ‘

Q 0, p=0
B

:82180 :80

jadg

B-W :,B-jadg ‘

0,-C  p-C Adiabatic: 0, =0

AT=T-T, =




9 | Determination of Temperature Rise with Taylor-Quinney Coefficient

ﬁo-jadg—QT _ﬁ-jadg

AT=T-T, = B Is easier than 8, due to unknown heat
PG, Py C, transfer at lower strain rates.
0<p<p <1 Strain Rate Effect
104 |—Example shape of proposed [3 curve with Boltzmann ﬂo Adiabalic_- BO Itzmann Functjon
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5 oo - . 2 p
9 — 0 . 0
: | B(é)= s B(&)= 1
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o l+exp| — &\ 9
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10 | Boltzmann Description of Taylor-Quinney Coefficient

Zhang T, Guo Z-R, Yuan F-P, Zhang H-S (2018) Investigation on the plastic work-heat conversion coefficient of 7075-T651 aluminum alloy during an impact process
based on infrared temperature measurement technology, Acta Mech Sinica, 34:327-333.

1.0
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+ - 0.0 B (experimental data from Zhang et al. (2018)) ||
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11 | Proposed Modification of J-C Model
oc=(4+B-&") f(£)-g(,¢)

Explicit Strain- and Strain-rate- Dependent

Thermo-softening Effect
Power-Iaw Strain-rate Effect

(24

where



12 I Determination of Strain-Rate-Effect

1200 = I - T - T - 2400
Constant strain rates are B < Stee
. 1000 - 2000 ~
preferred. However, in T
1 ° ° k . ° ’a ®
reality, it takes time/strain £ g, .| | o
= 14
for strain rate to ramp up. | £
o e00f | g, | - 1200 2
5 ) s
L | =
g @
— 400 ' -800 @
’ =
(o)
C
Song B, Sanborn B, Heister JD, Everett RL, Martinez TL, Groves 200 ] L 400 L
GE, Johnson EP, Kenney DJ, Knight ME, Spletzer MA, Haulenbeck —— True Stress
KK, McConnell C (2019) An apparatus for tensile characterization 1 - Engineering Strain rate I
of materials within the upper intermediate strain rate regime, Exp 0N 0
Mech, DOI:10.1007/s11340-019-00494-3. 0.00 ' 0 ;35 ' 0 '10 ' 0 '15 ' 0.20

True Plastic Strain



13 | Modified |-C Model for 304L Stainless Steel
Constants 3041 Stanless Steel

bt I N N N N R O N N A 555.47 MPa
4 B 1378.87 MPa
1000 i " 0.9497
o 0.01503

O Data (3000s™)
Model (3000 s™") |+ . 4
O Data (1500 ™) D 9.4431X10
e Model (1500 s'')
. Data (500 s
= Model (500 s™)
v Data(1s™)
Model (1 s7) m 1.3263
Data (0.01 s™)
Model (0.01 s)

0.5327

True Stress (MPa)
0
S
.7

600 7

L . 15104 -1
' 304L Stainless Steel # Data (0.00015") & IX107s
Model (0.0001 s™)
gL L 1 1 & [ 9 | ¢ L = | o
000 005 010 015 020 025 030 0.35 0.40 &0 0.012s

True Plastic strain

Song B, Sanborn B, Heister JD, Everett RL, Martinez TL, Groves GE, Johnson EP, Kenney D], Knight ME, Spletzer MA, Haulenbeek KK, McConnell C (2019) An
apparatus for tensile characterization of materials within the upper intermediate strain rate regime, Exp Mech, DOI:10.1007/s11340-019-00494-3.



14 | Modified |-C Model for A572 Steel

800 | | | | |
700 T
O Data (3000s™)

© Model (3000 s™")
a ©  Data (1500 s™)
E_ 600 - — Model (1500 s™)
. 2 Data (500 s™)
% — Model (500 s)
= <& Data (0.001s™)
Cg 500 - Model (0.001 s
=
F 4

400 _/_.ep—

| A572 Steel
300 T | | | | T T
0.00 0.01 0.02 0.03 0.04 0.05

True Plastic Strain

Constants A572 Steel
A 394.98 MPa
B 418.33 MPa
n 0.5522

o 0.03157

D 2.6460x10°
o) 0.7173

m 0.3098

& 1x107° s

o 128 571

Sanborn B, Song B, Thompson A, Reece B, Attaway S (2017) High strain rate tensile response of A572 and 4140 steel, Proc Eng, 197:33-41.



15 I Modified |]-C Model for 4140 Steel
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Qo

o

o
|

True Stress (MPa)
03]
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O

o Data (3000 s)
Model (3000 s™)
o Data (1500 s™)
Model (1500 s™)
Data (500 s™)
e Model (500 s7)
& Data (0.001 s7")
Model (0.001 s7")

700
600 -
4140 Steel
500 ) | i I | : |
0.00 0.02 0.04 0.06 0.08 0.10

True Plastic Strain

Constants 4740 Steel
A 562.41 MPa
B 330.62 MPa
n 0.1654

a 0.01968

D 1.589x10”
) 0.7111

m 0.3388

& 1X107° s

& Th et

Sanborn B, Song B, Thompson A, Reece B, Attaway S (2017) High strain rate tensile response of A572 and 4140 steel, Proc Eng, 197:33-41.



16 | Bridgman Correction for True Stress-Strain Response During Necking

Ag
er = In—

" True strain \
A

19
|

= Average true axial stress at the smallest

Cross section

F Aq

A=% 4

(Oa)av = )

1 ‘s|xy |ejpey

» [Uniaxial stress correction

or =k (O-a)av

k = Kl + %R) In (1 + %)]_1

" Requires instantaneous measurements of
minimum cross sectional area, .4, and

radius, R.




17 I Modified |-C Model for True Stress-Strain Response During Necking

2000 ¥ T T T ! T J T ! T ! T i 2400 i ! i ! i I T T i T
A572 Steel 1 4140 Steel
2000 A
1600 - o 68450
49419 1 B
oy " — 52681
= 38475 Dﬂ_’ 1600 - 33371 = 7]
o 33255 - = 23280 "
- -l 14182 L
E 10 25214 27408 - Py 97I ) 10485
g ? 1200 - . &5\4 A s |
5 - 5 0 G %
m 800 - o o :’A ® =i m ; 9499 L).'(‘ﬁ?
p | U . |23 sl 263 -
= - s = Data(3000s) || = 8007 - wrl oo A0
Model (3000 s™) ) Model (3000 s™) |
400 - A Data(1500s") | A Data (1500 s™)
Model (1500 S-T) 400 - Model (1500 5-1)‘ -]
® Data(500s") |- ! ® Data (500s7)
——Model (500 s™') Model (500 s™")
0 g T : T . T ' T : T . T : 0 y T ; T ' T ' T ' T .
0.1 0.3 0.5 0.7 0.9 1.1 13 1.5 0.2 04 0.6 0.8 1.0 1.2 1.4
True Plastic Strain True Plastic Strain
UﬂCCI‘tﬂiﬁti@S: Song, B., Sanborn, B., Thompson, A., Reece, B., Attaway, S., and

Teeter, R., High strain rate tensile response of A572 and 4140 steel, In:
. _ . 2017 ASME International Mechanical Engineering Congress &
» BExperimental data corrected with Bridgman method ~ Exposition (IMECE), November 3-9, 2017, Tampa, FL

» Description of strain rate effect



18 I Conclusions

" The Johnson-Cook model was modified with
" power-law strain rate effect
= explicit strain- and strain-rate-dependent thermosoftening using
" a Boltzmann description of phenomenological Taylor-Quinney Coetficient

N
[~ -im

-taeme){£] e (i) e | o))

L
Y 5
1+(_g]
€0

" The modified Johnson-Cook model was tested for three different materials — 304L
stainless steel, A572 and 4140 steels
" the model described the tensile stress-strain response prior to necking better than that

J

during necking
= Description of strain rate effect
» Uncertainties of Bridgman correction



