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3 Current Challenges within Computed Tomography

■ Traditional X-ray CT is typically performed with a polychromatic source that
emits x-rays across a broad spectrum
• Typically spans hundreds of keV to several MeV for industrial applications.

• Highly non-linear relationship between material, thickness, geometry, and energy.

• Beam filtering can help but is limiting in a number of ways.

■ Beyond Qualitative Imaging
• Advances in Deep Learning

• Material characterization

• Interface resolution

• Verification and Validation Applications.

■



4 Hyperspectral Computed Tomography System

SNL has developed the world's only hyperspectral computed tomography (H-CT)
system specifically engineered and designed for industrial and security applications.

■ 500 mm field-of-view.

■ 300keV maximum energy.

■ 640x640 voxel slices with submillimeter resolution.

■ Successfully demonstrated material identification across

multiple materials.

■ For a majority of NDE applications, low energy is not

feasible due to lack of penetrating power.

■



5 Current Challenges within Hyperspectral Computed
Tomography

■ Although H-CT has shown to improve CT reconstruction, there exist a number
of challenges.
• System thermal stability

• Photon-Counting Noise

• Higher Dose

• Long scan times

■ Possible mitigations:
• High-Fidelity Calibration

• Iterative Reconstruction

• Sparse Sampling

• Pre-hardening beam

■ Initial Investigation
• This work will perform a numerical study to investigate the feasibility of improving H-CT

system performance via system operator estimation.
• System operator estimation will enable improved calibration, reconstruction, and system

characterization.

■



6 Linear Imaging System •

Central Question.- Is it possible to accurately model and characterize the

nonlinear encoding system of the H-CT system as a sequence of linear operators?

If so, what does this mean? Simulating a sequence of measurements of

point-response functions arranged into a 3-dimensional tensor array.
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7 Discretized System Operator •

Define H-CT system geometry and discretize field-of-view (FOV).

Distribute absorbers in the FOV and scan to estimate point-response function.
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8 Approach: Data Acquisition via Numerical Study

Ideal Data
Calculate path length through object.

• N o noise.

• PHITS: Particle and Heavy Ion Transport Code System
• Monte Carlo particle transport simulation tool.

• Provides realistic photon behavior and statistics.

• Each column of the system operator H: sinogram of a
single cylinder

• Each energy channel will have a system operator

• For this work, the system operator will have 640k rows
and N columns, where N is the number of voxels in the
FOV
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9 Compression: Estimated System Operator

• Without compression, the system operator approximately700yottabytes.

Parametrize each projection by a given basis function.

• Use an optimization method to fit a parameterized basis function to each projection.
• This work utilizes Nelder-Mead, a direct search method.

■
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10 Compression: Estimated System Operator ■

Compress 640 values per projection to only 4 parameters per projection using an asymmetric
ellipse as the basis function.
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Decompression of Estimated System Operator

Image vector g calculated using parametrized system operator and discretized object vector f.
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12 Extrapolation of Parameters

Extrapolating projection information mitigates inaccurate point response functions for
cylinders of submillimeter radii.

1. Define a n X n grid of cylinders in the FOV.

2. Take one projection of each cylinder for two different radii, and r2. For each radius, compress
the projection into parameters [aL, aR, b, x0].

3. Fit a function to each parameter with respect to radius using Nelder-Mead.

4. For each cylinder position, extrapolate each parameter with respect to radius using the functions
defined in Step 3.
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13 Interpolation of System Operator

Interpolate the system operator to avoid measuring the point response at every voxel
in the field of view.

Define a m X m grid of cylinders in the FOV.

For each cylinder:

Calculate the location of every projection in the FOV.

ii. For each projection location, use two-dimensional cubic spline interpolation of
neighboring points to estimate the parameters [aL, aR, b, x0].



Comparison of the Ideal and Parameterized System
Operators: Sinograms
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15 Comparison of the Ideal and Parameterized System
Operators: Reconstructions
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Comparison of the Ideal and Parameterized System
Operators: Sinograms using PHITS Data
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1 7 Comparison of the Ideal and Parameterized System
Operators: Reconstructions using PHITS Data

.11
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I 8 Conclusion

• H-CT system characterization with a linear system operator seems to be feasible.

• Parametrization of system operator preserves system characteristics and optimizes data storage.
• Challenges may exist with optimization routine

• Extrapolation of parameters is feasible to allow for submillimeter estimation

- Interpolation allows for fewer system measurements

• Applications for accurate simulated H-CT data:
• Machine learning algorithms for data analysis.

• Iterative reconstruction methods.

• Material Characterization



19 Future Work •

Investigate Monte Carlo variance reduction methods to improve the data quality

- Simulate frame averaging

• Characterize entire system by describing system operator with more samples

N Investigate other reconstruction algorithms and compare to FDK

• Investigate sparse sampling methods

• Investigate temporally dependent sources of noise (i.e. pulse-pile up)

Characterize and calibrate real-world H-CT system.
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