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Variational Lagrangian Particle Methods
The 1D Vlasov-Poisson system is formulated with Low’s Lagrangian:
L= Ly + Lint + Ly
with
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Variation with respect to z and ¢ gives (for electron species, assuming
immobile ions)
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where g(z) = [ dvf(z, y, t) and fol dzo(z) = fol dzo'®(z).




Density Estimation

Assume N, (macro) particles in the system and uniform grid on 0 < z < 1.

Write a charge deposition function in terms of a fundamental “kernel” as

1 T
=-K(—]).
@) =3 ( h)
where h is the particle width, not necessarily related to the grid spacing.
Some commonly used kernels are:

Ko(z)=U <:z: — —;) U <% — :c) (fundamental kernel)

with U the step function; then derived kernels as
Kl = Ko * Ko,
K, = K1 % Ko = Ko x Ko x Ko, etc. (derived kernels)

where K % K(z) = J K(y)K(z — y)dy.
The estimated electron density is obtained as (using &, for particle
positions) Np

0ut(2) = ) dap( — éa).

a=1
(Note: p(z) is denoted as S(z) in traditional texts such as the book by
Birdsall & Langdon.)




Statistical Analysis

Restricting z to grid values, z;, we can estimate the density on the grid:
NP NP
Qest(Ti) = Z Jop(Ti — &) = Z 9api(€a)
a=1 a=1

For a periodic and charge neutral system, we also assume f o(z)dz = 1.
Suppose the particles are distributed with a position distribution f(£); then

(e(z) an (o~ &) = [ dtota - )70

Assuming p(z) = p(z) + 8(z), where p; = (p;) is average over the
distribution of particles and g; the fluctuating part due to the particle
noise, we have _ "

Qi =0:;+ 0i.

Next, we write
(e(z:)e(zy)) = (8(2:)) (2(z)) + (8(z:)é(z))
If we define the covariance matrix as Cy = (8(x:)8(z;)), we see that

NP
Cs = audp (p(a — éa)p(z — £p)) — (2(x:)) (8())

a,p




Correlations in a Uniform Density Distribution

For uniform density we set f(£) = 1. First consider the kernel X (©)
corresponding to nearest grid point (NGP) charge deposition, p = p®. The
particle width equals the grid spacing h = A = 1/N,. For < = j we have

(e(z)e(z)) = D (PO (@ — €)) (P (2 — €)) dagp
a=p

+ (@~ €a)) (P (@ — €p)) dads

ap
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Using [ [p(¢)]” dé = (1/A) [ Ko(n)*dn = (1/A) and

L POz — €)pO (i — ¢)dede' = [ p(z; — €)d¢ [ pO(z — ¢)dE' =1,
(elz)e(z)) = 37— +1- 5

where Nppe = ANy = Np /Ny, n = (€ — x)/h and
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Correlations in a Uniform Density Distribution (cont’d)

We find for 2 = 1-A

N, bpc

C;‘j =
For 5 # j we have
(e(z)e(@)) = (p(z: — £)) (0 (z — &) a2

+ > (P (@i — £)) (PO (2 — £6)) Gadp-
ey

The kernels p©(z; — £&,) and p(o)(ag &p) do not overlap for ¢ # j, so the
first term is zero. The second term is

2 —
Nprsz /p(o)(mi —$)d€/p(°)(z] —¢)de' =1— Nip

leading to A

N, ppc
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—— 6y —
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Note: the factor —A/ Ny, is small but should not be neglected because it is
present in all terms of Cj (see page 8 below).

G = —

Combining we find
Cij =




Similar calculations give the following correlations (again, uniform density
is assumed):

2 A s
C(O) = { 3Nppe Nppe for v=J
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A . . gy
e ~ T for i=j+1 (linear charge deposition)
and
11 N L
N~ Wope for j=1
Cig'O) - 60:;27# - Nﬁx for j=1%+1 (quadratic charge deposition)

0Ny~ Ny for 7=11+2




Negative Correlations

We notice that, in addition to the diagonal part of Cj; equal to 1/ Npyc,
there is a part of Cj; equal to —A/ Ny, for all 4,j. This overall negative

correlation is due to the fact that the total number of particles N, is fixed.

Specifically, for p(® (NGP) we see that

Ny N,
Z Oest(Ti)A = Nip Z <Z P(o)($i - ‘fa)A> =1

%

because for fixed a the quantity p(o)(xi — €4) = 1 for the nearest z; and 0
elsewhere. This means that
> é(@)=0

i

Therefore we conclude that <§($1)2> ok Zi#y (8(z:)8(z;)) = 0 for each ¢ or
J

We can also directly verify that E] Cy = 0 for all particle shapes.




Numerical Monte Carlo Simulations of Correlations
in Uniform Density Distribution

We use the normalized quantities for linear charge deposition:

5iiECiiXNppczg_h:O.666...—h
1

5i,ij:1 = Ciit1 X Nppe = 6~ h=0.166... —h
N, M 51 51‘,111
theoretical | numerical | theoretical | numerical
250 100,000 | 0.6266... 0.6269 0.1266. .. 0.1267
2500 10,000 0.6256 0.1251
25,000 1000 0.6208 0.1252
250,000 100 0.6673 0.1827

Table: Monte Carlo simulation results; M is the number of samples in the
averages.

Numerical simulations have also confirmed the theoretical results for
quadratic charge deposition (not shown).




Nonuniform Density Estimate: Bias

Consider now the more general case of p(z) # const. For a particle shape
given by a symmetric kernel K(z) we find:

Qest(m) Z Qx p(iL‘ - £0¢ >

= <Z qa> /dé“p(m—ﬁ)e(&) = /d£ K< >9(5)

Since we assume ) | ¢o = 1, We ca rewrite

ol = /dnK(n)g(z+hn)~ o) + L /dnK(n)n2

by assuming the density varies over a length long compared to A and
expanding in series. The term with o'(z) equals zero because K(z) is
assumed symmetric. The second term represents the bias:

(0est(z)) = o(z) + B

or e, h2
p=2210 (2) /dnK(n)nz-




Non-uniform Density Estimate: Variance

Consider now the variance of the density estimate. We have
(eet(2)?) = Y a2 (p(z —€a)) + ) dads (Palz — €a)p(z — £p)) -
o=p op

Again, assuming slow density variation and expanding, we find:

(:v)

(@est(2)’) ~ dnK (1) + <1 - 1\1@,) (gest(2))”

The variance of the density estimate is V = <gest(z)2> — (@est(z))?, or
o(z) z_ 2
Va~=—">= [dnK —t .
N,k / nK(n) N, o(z)

Finally, neglecting the second term (N, is usually very large) we have for
the variance:

v &) fankny.




Bias vs. Variance Optimization: Optimal Particle Width

The variance relative to the actual density is

Q = ((eest(z) — 0(2))*) = (Lest(2)?) — 20(2) (0est()) + ().

Using (0est(2)?) = V + (est(z))? and (pest(z)) = o(z) + B we obtain
Q=V+ B>

An approximate theoretical calculation of the optimal particle width can
be done by averaging over the domain and defining

Ci = ([dz o"(2)?) [ [d¢ K(C)(2]2 /4 and Co = ([dz o(z)) [d¢ K(¢)?; then

Ca

~ 4
Q(h) ~ Cih* + T

Optimizing with respect to h yields:

L _(_c i — _BeEeE 1
opt — 401Np min — 44/5N:/5 N;/S




Bias vs. Variance Optimization: Numerical Results

Theory predicts that optimal particle width results from a balance between
two trends:

» Waider particle shape would increase the bias while decreasing the
variance.

» Narrower particle shape would increase the vartance while decreasing
the bias.
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Characterization of Noise in the Electric Field
(Uniform Density)

The noise in the density is of importance because it affects the electric
field, which in turn affects the particle orbits. For a periodic charge-neutral
system we can calculate the electric field form the density as

@) — o(a) or B(a)=E(0) - / ' o(e).

Using the charge neutrality condition f dz'o(z') = 0 and zero applied
potential, foldz E(z) = 0, we obtain

1
E(0) = —/ dz' z'o(z")
0
and therefore

E(z):—/oldz’ z’g(m’)—/:dz'g(z').




Characterization of Noise in the Electric Field (cont’d)
(Uniform Density)

For the discrete form of the electric field we have (and staggered £; and p;.)

i—1

E, =Ey— A Z Qi+1/2,

j=0

Using the discrete form of the charge neutrality A Zf[:go E; = 0 we obtain

Ng—2 1—1
B, = A? Z Qj+1/2(Ng —1—7) — AZ @j+1/2-
j=0 J=0

The noise in g;, /2 leads to noise in the electric field:

Ng—2 —1
E=2") bin(Ng—1-5) =AY biyryn = BY + EP
7=0 j=0

and the charge neutrality condition gives
Ny—1

> s =0
j=0




The simplest treatment is that for a the particle shape p

calculate
Nyg—2 Ny—2
1,1) _ [/ m(1) m(1 ” ,.
D = (BVED ) = 8" 37 37 Ny = 1= KM, = 1= ) (Berajabisasa)
k=0 (=0

D& = < BO E(2)> & < B® Ej“)>

Ny—1 -1
=A% Z (N, —1—k) Z (Br+1/2014+1/2)
k=0 1=0
Ny—1
-A® Z (Ng—1-1) Z (B141/20k+1/2)
1=0
-1 i—1

D = <Ei(2)Ej(2)> = A’ Z Z (Brt1/28141/2) -




Random Walk vs. Brownian Bridge
(Uniform Density)

A uniform random distribution is given is given by a Poisson density
distribution with a parameter A = 1/ Npp.. The correlation matrix in this
case is Cj; = 026, with 0 = g/ Nppe. Such distribution leads to correlations

i i
(BPED) = 873" (elhajablins) = 570 ) Y 8= A%oaMin(i, )
k=0 1=0 k=0 1=0
or 22
Dy = D( ) = Ad®Min(z;, z;), (random walk)

Which is the covariance matrix for a random walk. Now we use the
modified Poisson density, for which we have derived Cj = 0*(6;; — A). We

find 0
Dy = D{® = A’0®Min(4, 5) — A%0?4j
or
D= D(2 2 = Ag? Min(a;, z;) (1 — Max(zi, z;)) (Brownian Bridge).

This modification to the random walk is called Brownian Bridge and
results because Np=const (so is Npp.=const) is a fixed rather than expected

@ number (as is for Poisson distribution).
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Figure: Illustration of random walk (red) vs. Brownian Bridge (blue).




Conclusions

With a fixed number of particles, a non-Poisson distribution is
appropriate in describing the noise (error) in particle simulations.

Fixed number of particles leads to negative correlations in the
covariance matrix.

Optimization of bias-variance leads to minimizing noise in density
estimations via an optimal particle width.

Particle width —but not smoothness —important for density
estimations.

A non-Poisson distribution leads to a modification — Brownian bridge
for the electric field versus random walk for the Poisson
distribution — because the total number of particles is fixed.




