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Variational Lagrangian Particle Methods

The 1D Vlasov-Poisson system is formulated with Low's Lagrangian:

L = + + Lf

with

= 2 f dxodvofo(xo, vo) 
(ax(x0a, :0,0)

1
Lf = 2 f dx1.9.012

Lint = — f dxodvofo(xo, vo)0(x ,

f (x, y, t) = fo(xo(x, v , t), Vo(x, v , t), 0)

2

Variation with respect to x and gives (for electron species, assuming
immobile ions)

= V = — E(x),
620

= e donax2 

where e(x) = f dyf (x, y, t) and fcl: e(x) = fc1i. eion(x).

0  



Density Estimation

Assume Np (macro) particles in the system and uniform grid on 0 < x < 1.
Write a charge deposition function in terms of a fundamental "kernel" as

P(x)= (71)

where h is the particle width, not necessarily related to the grid spacing.
Some commonly used kernels are:

Ko(x) = U I x— 2) U (-
1 

2 
— x I (fundamental kernel)

with U the step function; then derived kernels as

K1=Ko*Ko,

K2 = Kl * K0 = K0 * Ko * K0 etc. (derived kernels)

where K * k(x) = f K(y)k(x — y)dy.
The estimated electron density is obtained as (using for particle
positions) Np

eest(x) = qap(x — ea).
a = 1

(Note: p(x) is denoted as S(x) in traditional texts such as the book by
(=I Birdsall & Langdon.)



Statistical Analys* -

Restricting x to grid values, xi, we can estimate the density on the grid:
Np Np

eest(A) = qap(x, — ) E qapi(C.)
a=1 a=1

For a periodic and charge neutral system, we also assume f e(x)dx = 1.
Suppose the particles arp distributed with a position distribution f (e); then

(e(A)) = E qa(p(xi — ea)) = f de p(r, — e)f (e).
a=1

Assuming e(x) = 0(x) + "0(x), where pi = (pi) is average over the
distribution of particles and ei the fluctuating part due to the particle
noise, we have

ei=ei+ei.
Next, we write

(0(xi)e(xj)) = (0(A)) (e(xj)) + CO(A)-0(xj))

If we define the covariance matrix as Cij = (-0(xj)-0(xj)), we see that
Ar„

= qaq,s (p(A — ea)p(x; — ep)) - (E)(A)) (0(x,)) .



Correlations in a Uniform Density Distribution

For uniform density we set f (e) = 1. First consider the kernel K(°)

corresponding to nearest grid point (NGP) charge deposition, p = p(0). The
particle width equals the grid spacing h = A = 1/N9. For i = j we have

(60)6,(A)) = E (p(0)(xi — ea)) K„(0)(xi ep)) gago
a=fi▪ E (po)(xi eoe) (p(o)(xi — co) qa go

at/3
— N f [p(°) (A — e)1 2 de

NP f 
N▪ P 

 (0)
(xz e)P(0) (xi — ei)dede'.Ni?

Using f [p(0)(e)] 2 = (1/A) f Ko(77)2dri = (1/A) and
f p(°)(xi - opo)(x, — eldede = f p(°)(xi - e)de f P(°)(xi — ode' = 1,

(e(A)e(A)) = 1 + 1 —
where Npix = 0 Np = NPIN9, = (e x)/h, and



Correlations in a Uniform Density Distribution (cont'd)

We find for i = j
1 — A

Cz~=  70.
.rvppc

For j# j we have
(e(x)e(A)) 

=  
(p(0)(xi 

—
ea)) (p(0)(x, ep)) (2,2

E (p(0)(xa ec)) (p(0)(xl ep)) qc, 40•
a~p

The kernels p(°)(x., — ec,) and p(°)(x, — ep) do not overlap for i j, so the
first term is zero. The second term is

Nr2' NP f p(°)(xi - ode J  p(°)(xj — ode = 1 - Nr

leading to

Combining we find

A
=  

Nppc

1 A
Cyj — ,

IV PPc Nppc

Note: the factor —A/Npp, is small but should not be neglected because it is
present in all terms of (see page 8 below).



Correlations with Higher Order Particle Shapes

(Uniform Density)

Similar calculations give the following correlations (again, uniform density

is assumed):

2 A

c(0) 3Nppc N„, for =
.) 1 A

6N„, Nppc for i = j 1

and

11 a
20Arpp, Nppc
13 A

60Npp, Nppc
1 A

120Nppc Nme

(linear charge deposition)

for j =
for j = i ± 1 (quadratic charge deposition)

for j = i ± 2



I egative Correlations

We notice that, in addition to the diagonal part of Ci, equal to 1/Nppe,

there is a part of C, equal to —A/N,p, for all i, j. This overall negative

correlation is due to the fact that the total number of particles Np is fixed.

Specifically, for p(o) (NGP) we see that

Np (N,

E eest(A)A = N E p(°)(x, — c,)A) =
cx=1 2=1

because for fixed a the quantity p(°) — = 1 for the nearest s, and 0

elsewhere. This means that

Therefore we conclude that -0(xj)2) + at; co(xj)-0(xj)) = 0 for each i or

E = 0;

We can also directly verify that E
3 

= 0 for all particle shapes.



Numerical Monte Carlo Simulations of Correlations

in Uniform Density Distribution

We use the normalized quantities for linear charge deposition:

2
Cii x N„, = — h = 0.666 ... — h

1
Cz,ifi=Ci,ifixNPP,=6—h=0.166...—h

Np M aii ai,i±1
theoretical numerical theoretical numerical

250 100,000 0.6266... 0.6269 0.1266... 0.1267
2500 10,000 0.6256 0.1251

25,000 1000 0.6208 0.1252

250,000 100 0.6673 0.1827

Table: Monte Carlo simulation results; M is the number of samples in the
averages.

Numerical simulations have also confirmed the theoretical results for

quadratic charge deposition (not shown).



Nonuniform Density Estimate: Bias

t..,wthiuer now tne more geneiai c,ase U1 const. ror a particie snape
given by a symmetric kernel K (x) we find:

(eest(x)) = (p(x — ea))

= (E qa f ckp(x — oe(e) = fdelK  
h 
e) e(e).

h

Since we assume E qa = 1, we ca rewrite

(eest(x)) = f dnic(n)e(x + hn) e(x) ell(x)h2 f &ix-me
2

by assuming the density varies over a length long compared to h and
expanding in series. The term with e(x) equals zero because K (x) is

assumed symmetric. The second term represents the bias:

(eest(x)) = e(x) B

or
B = 

e(x

2

)h2 f 
K (On2.
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Non-uniform Density Estimate: Variance

Consider now the variance of the density estimate. We have

eest(x)2) = Eq2 (p(x — ea)) + qaqp (pa(x — G,)p(x — ti)) .

a=P

Again, assuming slow density variation and expanding, we find:

Keest(x)2) ps:,. f th1lf(77)2 + (1 — .A7,1 ) (gest(x))2

The variance of the density estimate is V = (gest(x)2) — (gest(x))2 , or

V ekxh) f dr1K(77)2 — —N1 p e(x)2

Finally, neglecting the second term (N7, is usually very large) we have for

the variance:

)
V P.; f d771-(07)2 .N

h
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Bias vs. Variance Optimization: Optimal Particle Width

The variance relative to the actual density is

Q = ((eest(x)— e(x))2) = (eest(x)2) — 2e(x)(eest(x))+ e(x)2.

Using gest(x)2) = V + (pest(x))2 and (gest(x)) = p(x) B we obtain

Q = V + B2.

An approximate theoretical calculation of the optimal particle width can

be done by averaging over the domain and defining
Cl = (fdx en(x)2) [fd( K(C)C2] 2 /4 and C2 = (fdx e(x)) fc1( K(()2; then

Q(h) C1h4 + NC2h 

Optimizing with respect to h yields:

)1/5
C2

h °Pt = 4C1N,
and

/5 /5
5 C. Co 1

Qmin =  

44/54/5
4/5
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Bias vs. Variance Optimization: Numerical Result4.1

Theory predicts that optimal particle width results from a balance between
two trends:

► Wider particle shape would increase the bias while decreasing the
variance.

► Narrower particle shape would increase the variance while decreasirtg
the bias.
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L Characterization of Noise in the Electric Field
(Uniform Density)

The noise in the density is of importance because it affects the electric

field, which in turn affects the particle orbits. For a periodic charge-neutral

system we can calculate the electric field form the density as

dE(x)

dx
= g(x) or E(x) = E(0) — f dx' e(x1).

Using the charge neutrality condition fdx' g(x') = 0 and zero applied

potential, foldx E(x) = 0, we obtain

and therefore

E(0) = — f dx' x' g(x1)

E(x) = — f dx' g(x')— f dxf e(xl) .

14



Characterization of Noise in the Electric Field (cont'd)

(Uniform Density)

For the discrete form of the electric field we have (and staggered E, and 0,.)
i-1

Ei = Bo — A ej+1/2,

=0

Using the discrete form of the charge neutrality A EN90 Ei = 0 we obtain

N9-2 i-1

= A2 ej+112(Ar9 — — i) — A

i=o i=o

The noise in ej1/2 leads to noise in the electric field:
N9-2 i-1

Ei = A 0j-Fi / 2 (Ng - 1 -

ej+1/2.

) — A '&1/2 = E,(1) E,(2)
j=o j=0

and the charge neutrality condition gives
N9-1

E -6+1,2 _0.
,=0

15



Correlations for the Electric Field

(Uniform Density)

The simplest treatment is that for a the particle shape p(O) (NGP). We
calculate

= (r)A(1)) =
N, —2 Ng —2

k=0 1=0

(M1)Ac2)) (M2)Ac1))

N, -1

= —A (Ng — 1 —

k=0

AT9-1

— A3 E (Ng — 1

1=0

— l)

—1

1=0

j-1

1=0

i-1 i-Dz(.722) _ (k2).k.,(2)) _ 02 E
k=0 1=0

(Ng — 1 — k)(Ng — 1 — l) ("Ok+1/2 -Ol+1/ 2) ,

(ek +1/ 2 O/d-1/2)

01+1/2 AOk+1/2)

t)k +1/ 2 .01+1/ 2 ) •
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Random Walk vs. Brownian Bridge

(Uniform Density)

A uniform random distribution is given is given by a Poisson density

distribution with a parameter a= 1/N„,. The correlation matrix in this

case is C, = cr25, with a2 = ql N„,. Such distribution leads to correlations

(k2):t3(2)) A2 E E -P -P \
ek-I-1/2e/+1/2/ = A2(72 \--"‘ Sid = A2cr2Min(i, j)

k=0 1=0 k=0 1=0

or
_ D,(22,2) Acr2Nrn(x,, x3), (random walk)

Which is the covariance matrix for a random walk. Now we use the
modified Poisson density, for which we have derived C, = o-2(S, — A). We

find

or
=

Di(32,2) A20.2min(i3 j) 
0
3u2ij

= D,(32'2) = Acr2Min(x„ xj)(1 — Max(x„ xi)) (Brownian Bridge).

This modification to the random walk is called Brownian Bridge and

results because Np=const (so is N„„c=const) is a fixed rather than expected

ID number (as is for Poisson distribution).
17



Random Walk vs. Brownian Bridge

(Uniform Density)

Figure: Illustration of random walk (red) vs. Brownian Bridge (blue).
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Conclusions

► With a fixed number of particles, a non-Poisson distribution is
appropriate in describing the noise (error) in particle simulations.

► Fixed number of particles leads to negative correlations in the
covariance matrix.

► Optimization of bias-variance leads to minimizing noise in density
estimations via an optimal particle width.

► Particle width—but not smoothness—important for density
estimations.

► A non-Poisson distribution leads to a modification—Brownian bridge
for the electric field versus random walk for the Poisson

distribution—because the total number of particles is fixed.
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