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2 | Evaluate existing USG technologies

Evaluate current challenges and constraints associated with the physical security regime in the
domestic Light Water Reactor nuclear industry
o |dentify existing DoD, DOE-NNSA, and DHS data and methods for potential use with domestic fleet

Conduct initial assessment and provide recommendations on areas for improvements to reduce cost
to implement an effective security program
o ldentify near-term and long-term LWRS R&D efforts

Initial evaluation to develop and validate methods which can be used to implement an updated and
optimized physical security regime for the domestic fleet
o Create validated data sets on M&S techniques for applications by the domestic LWRs




: | Provide technical training on physical security technologies,
modeling, and enhancements
10 SNL staff provided the 5-day classroom, hands-on, and demonstration sessions
Attended by 14 utilities, NEI, EPRI, and INL

Complete and overall feedback is very positive
o Working with NEI to determine interest in future training efforts funded by industry




4+ 1 Revise Lone Pine Documentation

Lone Pine Nuclear Power Plant

o Hypothetical PWR built in 1972 to produce 1150 MW, in a fictional country
o Open source information that is purposefully incomplete for PPS and protective strategy
o Initially created for discussions between the USG and other countries on NPP security

Allows for open discussions on;
o PPS technologies and their deployment

> Protective strategy and response for adversary scenarios

Allows for open source modeling comparisons

Lone Pine Nuclear Power Plant Site




s | Integrated System Response Modeling

Goal: Develop modeling and simulations for existing plant security regimes using identified target
sets to link dynamic assessment methodologies by leveraging nuclear power plant system level
modeling with force-on-force modeling, and 3D visualization for developing table-top scenarios

Impact: Create an integrated force-on-force and nuclear power plant system response framework
for a holistic approach in determining security related events as they relate to the potential for the
onset of core damage

- FoF assumption — Adversary gains access to the control room ™= |mmediate onset of core damage

Technical Report: September, 2019
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¢ | Methodology

Dynamic Event Tree Scheduler

Force-on-Force Simulator w System Response Simulator
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Discrete dynamic event trees is an accelerated
uncertainty propagation methodology

> Predetermined set-points cause the dynamic simulator
to stop and restart multiple runs to characterize
uncertainties

experienced late in an event
need not be simulated from t=0




7 I High Level Procedure

1. Create stable dynamic response simulations
o The models need to be robust enough not crash the simulation when variables are changed
mid-simulation
2. Decide key uncertain parameters of interest for dynamic response models
- Response force tactics (Force-on-force simulation)
o Reactor Decay Heat Levels (reactor simulation)
o Manual operations of equipment (reactor simulation)
o Delay features (Force-on-force simulation)
o Others ...

3. Create and discretize cumulative distribution functions for key parameters
o Similar to stratified sampling but simulations are not all started from t=0

4. Program binary branch points into dynamic event tree scheduler
o Starts, stops, and branches system response simulations as necessary



s I Dynamic Event Tree Scheduler — ADAPT

A Sandia-developed dynamic event

tree scheduler uses control functions ==
within a nuclear power plant system 3 p
response simulator to determine when \‘””3‘“‘”"‘”’ """"
branching criteria are satisfied ‘ ) [ (=) |
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Branching Visualization
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9 | Force-on-Force Simulator — SCRIBE 3D

Provides tools to visualize & record all events, actions, discussions during a tabletop exercise

Data Collection
- Can play back in real time or at various speeds.
> Transcript reports and video automatically generated

Full recording of scenario
> To show others or for later use
> Allows participants to better understand the impact of their decisions

Does timeline automatically
> One person is usually completely dedicated to doing the tabletop’s
timeline
Saving/Loading during exercise
- Can go back and modify scenarios to show how different decisions
would affect security
Solves line of sight issues
- Shows things a map cannot. See right
Solves timing issues
o Traditionally it was difficult to figure out where moving entities would be
at specific times
Easy to use
> Anyone can be trained to use it




o I Nuclear Power Plant System Response Simulator — MELCOR

NRC sponsored simulation code for analysis of accidents in nuclear power plants

o Applied to containment design basis accident simulation too
- Reactor types: PWR, BWR, HTGR, PWR-SFP, BWR-SFP, HTGR, SFR

Fully Integrated, engineering-level code

o Thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and
confinement buildings;

. . Modeling and Analysis of
o Core heat-up, degradation, and relocation; Severe Accidents in
- Core-concrete attack; S T s

- Hydrogen production, transport, and combustion;
> Fission product release and transport behavior

phenomenological understanding gained through NRC ol
and International research performed since the
TMI-2 accident in 1979

Integrated models required for self consistent analysis

Desktop application

o Windows/Linux versions
o Relatively fast-running

Important Severe Accident Phenomena g3
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1 | Progress to date

Update the TMI-2 MELCOR model for use with ADAPT in the Lone Pine scenario
- MELCOR deck has been converted and generic scenarios
o ADAPT is the dynamic event/fault tree scheduler

Updates to the SCRIBE 3D model and force-on-force scenarios are complete
Initiated linking SCRIBE 3D to ADAPT

> Potential Issue: SCRIBE 3D is a Unity software platform and has only been run on Windows OS
o ADPAT is a LINUX based software

Initial state Lowest lavel Initial fuel collapse Extant of core damage Recovered condition
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TMI-2-like melt progression
Lone Pine NPP reactor design Lone Pine Nuclear Power Plant
Notional Facility
Shown in Scribe 3D



12 | Risk-Informed Nuclear Security — Direct Translation

Traditional Nuclear Safety Risk Equation:

Risk = UZL{(pi(01), x:)}

Where:
i = The i" scenatio category (i = 1,...,/)
p; = The joint distribution of the probability density function for the i scenario Threat
-th : Threats are entities or actions with
@, = The frequency of the i*" scenario the potential to cause harm —

including terrorist attacks.

x; = The consequence or evaluation measure of the i scenario

: . . ' . . Vulnerability Consequence
Direct Translation Security Risk Equation:
physical features or effect of occurrences
i=l j=m . natferatiar;al attr-bulei like terrﬂocrfist a:tacks
3 — — nat render an as t i r
RlSk - Ui:]_{ j:]_ (Tl (vj,i)l x],l)} NOT approprlate aie:?o exgllr;)fatsl:n, resz:ti':'lzlilnralos:::;tiai
including gates, perimeter impa;t areas such as
The equation is incomplete TRrICeS, B pomplicr iaitbnlhods
Where: economy.

i = The it scenario category (i =1,...,/)

j=The jihtarget set (j = 1,....,m); 1 = primary target

T; = The threat for the it scenario

v;; = The vulnerabilities of the i scenario for a j" set of targets
x;; = The consequence or evaluation measure of the i scenario for a j" set of targets

Source: GAD analysis of the Department of Homeland Security information, | GADQ-19-468



13 | Past Risk Informed Security Models

Risk-Informed Management of Enterprise
Security (RIMES) Risk Equation:

-1 =1
Risk = Ul:]_{(dl) xl)} Core Melt with
Small Release &
Large Ecanomic

Damage

Where:
i= The ith scenarioi=1,...,/
d; = The degree of difficulty for an adversary to

successfully accomplish i’ scenario causing
consequence X;

x; = The consequence or evaluation measure of
the i scenario

Consequence=>

Small Release &
Economic Damage

Economic
Damage

Core Mel with
Large Release &
Large Economic

Damage

Scenarios of Concern

-

Design Changes

Notional Difficulty—=> |

S

Note: In this RIMES representation, as well as the
next model, the target index will be included under
the scenario index, i, to simplify the notation



14 | Past Risk Informed Security Models (continued)

More General Security Risk Equation:

Note: A more precise form of this

o j=J i=] model would consider adversary utility
Risk = Uj:l(Ui:]_ (tpij; Xi) )}) based on the range of possible
] outcomes from the scenario
Where:

j= The jih adversary (from a threat assessment)j =1,...,J

i= The ith"scenarioi=1,...,/

tp; = Threat potential for an j to want to accomplish i scenario causing consequence X;

x;= The consequence or evaluation measure of the i scenario

pe; = The effectiveness of the physical protection system in preventing the adversary j from
successfully accomplishing it" scenario causing consequence x;

Where threat potential is assumed to be some combination of the following factors that is correlated with the
(unknown) probability of attack:

d; = The degree of difficulty for adversary j to successfully accomplish i scenario causing consequence x;
pas; = Adversary j's perceived probability of success in accomplishing the " scenario.
u; = The utility for adversary j from successfully accomplishing i scenario causing consequence x;



15 I Threat Potential rather than Probability of Attack

Threat Potential is defined as a set of measures that are treated as if they are positively correlated
with the “True” Likelihood of Attack

Higher Adversary’s perceived probability

of accomplishing the scenario S

/

Assume positive
correlation

Utility to adversary

Likelihood | fromaccomplishing
of Attack the scenario, uj; (not

necessarily our measure
of consequence x))

"-.__“

AN

Inverse of scenario degree of difficulty, d
(just ONE threat potential measure)

/

Lower

Lower Threat Potential Measure(s) Higher



Questions




