This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 9704C

MATNIP — MAThematical foundations for MultiMat 2019
Nonlocal Interface Problems: multiscale
simulations for heterogeneous materials

PRESENTED BY

M. D'Elia, joint work with P. Bochev, G. Capodaglio*, M. Gunzburger

©@ENERGY AYSA

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and
Engineering Solutions of Sandia LLC, a
wholly owned subsidiary of Honeywell

LABORATORY DIRECTED D parthient oF Ehrgy's Naflona
(YNATNIP &) R D researcH s DEVELOPMENT ey Secuty ot

September 12" 2019




Presentation outline

m What is a nonlocal model and Why we need an interface theory
m Derivation of a nonlocal interface theory

m Well-posedness

m Consistency and asymptotic behavior
= Numerical tests

m Next steps



WHAT is a nonlocal model?

WHY do we need an interface theory?
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Nonlocal models capture effects that PDEs fail to describe

Basic concepts: —

m The state of a system at any point depends on the state in a neighborhood of points , A
m Interactions can occur at distance, without contact | K T & |
m Solutions can be irregular: non-differentiable, singular, discontinuous N j |
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Basic concepts:

m The state of a system at any point depends on the state in a neighborhood of points , A
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m Solutions can be irregular: non-differentiable, singular, discontinuous

Fact: these models can capture effects that traditional PDEs fail to capture
1. Multiscale behaviors & Discontinuities such as cracks and fractures

e.g. peridynamic model for mechanics

2. Anomalous behaviors such as superdiffusion and subdiffusion

e.g. fractional differential equations

1. Percentage of damage in nonlocal
contact mechanics. Littlewood, SNL
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Nonlocal models capture effects that PDEs fail to describe

Basic concepts:

m The state of a system at any point depends on the state in a neighborhood of points , A

m Interactions can occur at distance, without contact
m Solutions can be irregular: non-differentiable, singular, discontinuous

Fact: these models can capture effects that traditional PDEs fail to capture
1. Multiscale behaviors & Discontinuities such as cracks and fractures

e.g. peridynamic model for mechanics

2. Anomalous behaviors such as superdiffusion and subdiffusion

e.g. fractional differential equations

Fact: nonlocal models provide an improved predictive capability for

m fracture mechanics m stochastic jump processes
m subsurface flow m image deblurring/segmentation
= plasma m heat conduction

1. Percentage of damage in nonlocal
contact mechanics. Littlewood, SNL

MSD superdiffusion: ¢ o > 1

standard diffusion: ¢

subdiffusion: t& o < 1

1

2. Mean Square Displacement vs time:
broader spectrum of diffusion processes
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Nonlocal models in one formula

Nonlocal operators (simplest setting)

Lu(z) = [5, o (u(z) — w(y))k(z, y)dy, where e 4

e integral form: catch long-range forces and reduce regularity requirements \
. Id

e Lu — Au as 6 — 0: convergence to classical diffusion for vanishing nonlocality

e k(x,y): application dependent kernel
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Nonlocal models in one formula

Nonlocal operators (simplest setting)

Lu(z) = fBé(w)(u(x) —u(y))k(z,y)dy, where

e integral form: catch long-range forces and reduce regularity requirements \——I// !
0
e Lu — Au as 6 — 0: convergence to classical diffusion for vanishing nonlocality

e k(x,y): application dependent kernel

—— “ DIFFERENT FROM PDEs!
Nonlocal diffusion | DIFFERENTFROMPDES!

Lu=f z€Q “Nonlocal boundary conditions”
are prescribed on a layer
+ conditions on (); surrounding the domain
— volume constraints
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I Challenges and goals

Modeling challenges Numerical challenges
= prescription of nonlocal boundary conditions = discretizations and their implementation
= unknown model parameters = design of efficient scalable solvers

= treatment of nonlocal interfaces
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lack of a rigorous nonlocal interface theory, required for
= handling of material discontinuities = physical interfaces
= design of domain-decomposition solvers for efficient simulations = virtual interfaces




I Challenges and goals

Modeling challenges Numerical challenges

= prescription of nonlocal boundary conditions = discretizations and their implementation

= unknown model parameters

= treatment of nonlocal interfaces

lack of a rigorous nonlocal interface theory, required for
= handling of material discontinuities = physical interfaces
= design of domain-decomposition solvers for efficient simulations = virtual interfaces

= design of efficient scalable solvers

Our goal: -

development of a mathematically rigorous and physically consistent theory s.t.

= Nonlocal transmission conditions yield well-posed interface problems

= Nonlocal interface problems recover classical formulations in the local limit g
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I How are interfaces treated right now?

= Theory: existing mathematical approaches fail to establish rigorous theoretical foundations
— loss of uniqueness

— loss of consistency at the local limit

= Simulations: several discretizations/implementations are ad hoc and heuristic
— spurious modes, oscillations, mass loss, numerical convergence deterioration
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I How are interfaces treated right now?

= Theory: existing mathematical approaches fail to establish rigorous theoretical foundations
— loss of uniqueness

— loss of consistency at the local limit

= Simulations: several discretizations/implementations are ad hoc and heuristic

— spurious modes, oscillations, mass loss, numerical convergence deterioration

Novelty of our work
= We derive the nonlocal interface formulation from energy principles
= We enforce convergence to local limits

= We ensure existence of a unique solution



A nonlocal interface theory @
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I A Nonlocal Vector Calculus

e generalization of the classical vector calculus to nonlocal operators
e allows us to study nonlocal diffusion similarly to the classical, local, counterpart ‘

e based on the concept of nonlocal fluxes

Nonlocal operators acting on u(x): R® — R and v(x,y): R? x R — R? j
e divergence of v: D(v)(x) = / (v(x,y) +v(y,x)) - a(x,y)dy

o gradient of w: G(u)(x,y) = (u(y) — u(x))a(x,y) = G(x,y)a(x,y)
e nonlocal diffusion of u: Lu(x) = D(Gu(x))

Lu() =2 [ (uly) ~ uix) alxy) - alx.y)dy

Lue) = [ (uy) - u(x)) k(x,y) dy = Lu(x



I A Nonlocal Vector Calculus

e generalization of the classical vector calculus to nonlocal operators
e allows us to study nonlocal diffusion similarly to the classical, local, counterpart

e based on the concept of nonlocal fluxes

Nonlocal operators acting on u(x): R® — R and v(x,y): R? x R — R?
e divergence of v: D(v)(x) = / (v(x,y) +v(y,x)) - a(x,y)dy

o gradient of w: G(u)(x,y) = (u(y) — u(x))a(x,y) = G(x,y)a(x,y)
e nonlocal diffusion of u: Lu(x) = D(Gu(x))

Lu() =2 [ (uly) ~ uix) alxy) - alx.y)dy

Lue) = [ (uy) - u(x)) k(x,y) dy = Lu(x

The nonlocal operator L is a
composition of divergence and
gradient = use variational theory

M.D'EIiaI
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I Inspired by Local Interface Problems (LIP)

LIP formulation derived from energy principles

Energy minimization

1 1
min El = §/~ m(Vul)2dx = §/~ HQ(VU2)2d£IJ N fluldx - | fQUQdZL'
Ql QQ Ql QQ

Ji° T g gt T Y ] - 0 |

with (u1,u2) € Hl(ﬁl) X Hl((b)



Inspired by Local Interface Problems (LIP)

LIP formulation derived from energy principles

Energy minimization

1 1
min El = §/~ m(Vul)2dx = §/~ /<.:2(Vu2)2d:1: N fluldx - | f2u2dx
Ql QQ Ql QQ

with (u1,u2) € Hl(ﬁl) X Hl(f~22)

Optimality conditions

—V(mVul) = fl, T e ﬁl
—V(KJQVUQ) = fg, il 622

up=uy r €I I modeling choice

k1Vuq-ny = koVug-mny z ' | outcome of the optimization
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I Inspired by Local Interface Problems (LIP) oE

LIP formulation derived from energy principles

/
Energy minimization
in 1/ GI °d +1/ 9" 2d fruid fauad Q)
min I = =< K1 u €T — K9 u r — 1u1dx — SUsdT
11l 2 Jo, FTIEH 2 Jo, " - e
~—0
931

Optimality conditions

|||‘ —V(K;qul) = fi1, x € ﬁl

—V(KQVUQ) = fg, il ﬁz

up=uy r €I I modeling choice

k1Vuq-ny = koVug-mny z ' | outcome of the optimization
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I Nonlocal Interface Problems (NIP)

NIP formulation derived from energy principles

Energy minimization

. 1 1
I min F,, = 5 //A (Guy ) k(x,y)dydx + 3 //A (Gug)?k(z, y)dyda
Ql QZ

—0
—/~ f1ulolac—/~ fouodx 2ol
Ql 92




I Nonlocal Interface Problems (NIP)

NIP formulation derived from energy principles

Energy minimization

. 1 1
Il min F,, = 5 //A (Guy ) k(x,y)dydx + 3 //A (Gug)?k(z, y)dyda
Ql QZ

— [ fimidr — [ fousdx
Ql 92

Optimality conditions
||” ~Liyui = f1, €N
—Lous = fo, v € Qs
- uy =us x €l
I Ni(u1) — Nao(u2) = Nu(ug,u2) + f €T,

M.D'Elia




I Nonlocal Interface Problems (NIP)

NIP formulation derived from energy principles

Energy minimization

1
minEn:—// Guq )2
1 2 JJg, (Cu)

Optimality conditions

||” —Liuy = f1, x €y
—Loug = fa, x € ()

. uy =us x €',

l;
k(x,y)dyd:z:—}—i//A (Gug)?k(z, y)dyda
Qo

— [ fimidr — [ fousdx
Ql 92

I | Vi(u1) — Na(uz) = Ni(u1,u2) + f |z € T,

l take the limit as 6 — 0

kl Vu1 ‘N = kQVUg ‘N9

local flux condition

M.D'Elia




I Nonlocal Interface Problems (NIP)

NIP formulation derived from energy principles

—
Energy minimization well-posedness

1 il
min F,, = 5 //A (Guy ) k(x,y)dydx + 3 //A (Gug)?k(z, y)dyda
Ql QQ

— [ fimidr — [ fousdx
Ql QQ

Optimality conditions

—Liuy = f1, x €y
—Loug = fa, x € ()

uy =us x €',

Ni(ur) — Na(u2) = Ny(ur,u2) + flz €y

l take the limit as 6 — 0

I
k1Vui-n; = kaVus-ns | local flux condition  consistency
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I Nonlocal Interface Problems (NIP)

NIP formulation derived from energy principles

——
Energy minimization well-posedness |

1 il
min F,, = 5 //A (Guy ) k(x,y)dydx + 3 //A (Gug)?k(z, y)dyda
Ql QZ

— [ fimidr — [ fousdx
Ql 92

Optimality conditions

—Liuy = f1, x €y
—Loug = fa, x € ()

uy =us x €',

Ni(u1) — No(ug) = Ni(ur,u2) + f |z €Ty

l take the limit as 6 — 0

—
k1Vui-n; = kaVus-na | local flux condition  consistency

€. What is the KEY?

definition of the
kernel function

across the interface

M.D'Elia
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I How to define the kernel across the interface

A piecewise definition of the kernel function:

( k11(x,y) == C(61) d11(x,y) XBgl(x)(y) X € Qlay = 61
k12(x,y) := C(01) ¢12(%,y) X, ((y) X€ Q1,y € o |

ko1(x,y) := C(02) p21(x,y) X, x)(y) Xx€ O,y € O

\ koo (x,y) := C(d2) ¢p22(x,y) X352 (x) (y) x€ Qz,y = 62,

/

| 1O symmetric

- ﬁz symmetric
92, [} non-symmetric

L -

\_ o




I How to define the kernel across the interface

A piecewise definition of the kernel function:

7

[ kii(x,y) == C(61) p11(%,y) XB,, (x0)(¥)
k12(x,y) = C(d1) d12(%,y) XB;s, () (¥)
ko1(x,y) := C(d2) ¢21(%,y) XB;, () (¥)

3 k2 (x,y) := C(d2) ¢pa2(x,y) X352 (x) (y)

\
H e
y -~
| x
N e W
{/ X Q—H =
\ 4 e A
El
4

X€§1’y€§l
xEQl,yEQQ
x €O,y ey

x € o,y € o,

—————————————————————————
how do we define ¢?

symmetric

symmetric

[} non-symmetric

M.D'Elia
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I How to define ¢

/

XEQl,y€§1

XEQl,YEQQ

( ) (¥)
( ) (¥)

= C(02) ¢21(%,y) XB,, )(¥) X€ o,y €
( ) (¥)

x € o,y € o,

definition of ¢;;

kernel functions ¢;; must be such thatas 6 — 0

—Lyuy=fi — =V(EVu)=fi z€ the nonlocal equations in the separate domains
_Loug=fo — —V(kaVug)=fr € converge to the local equations for 6 — 0




M.D'Elial

I How to define ¢

( kn(x,y) = C(61) dr1(x,¥) Xp, 0(y) x€Q,y e

ki12(x,y) := C(61) ¢12(%,y) Xp;, (x)(¥)

C(d2) ¢p21(x,y) Xp;s,(x(¥) x€ Qa,y €
(¥)

| F22(x,y) := C(02) ¢22(x,y) X, (x) (¥

XE§17}’€§2

I{?21 (X, y) :

X € Q27y = 927

definition of ¢;;

kernel functions ¢;; must be such thatas 6 — 0

—Liuy=fi — -VEVu)=fi z€ the nonlocal equations in the separate domains
B SEPREES SRR L [T, L. B M=t ® converge to the local equations for 6 — 0
I
condition: lim 2 [ kii(x,y) (ui(x) — wi(y)) dy = —kiAu;
A Q;
4 .
2D example®: C(§;) = T 0ii(X,¥Y) = K; next step: determine ¢;;
o,
*with Euclidean neighborhoods




I . M.D'E|ia|
How to define ¢ |

i k11(x,y) = C(01) ¢11 X,y) XBgl(x)(Y) X € ﬁlay = 51
X, Y) XB51 (x) (y) X € ﬁlay = f\22

(

( (
ko1(x,y) == C(d2) d21(%,y) X, ) (y) XE€E Qa,y €U

( (

X,y) X352(x)(Y) X € szy = QQa

identification of ¢;;

1. compute limits of the flux conditions

Ni(uy) — No(uz) = Ny(ui,uz) + f xe€l'y

2. determine kernel parameters such that the limit is

k1Vup-n; = keVugng X € I I




I How to define ¢

identification of ¢;;

1. compute limits of the flux conditions, x € ()4

% 2 (u1(x) —ui(y)) o11(x,y) dy
1 JTnNBs, (x)
11 4
_|_m (u1(x) —u2(y)) ¢12(x,y) dy
1 JToNBs, (x)
_|__4_ (u1(x) —u2(y)) ¢21(y,x)dy = f1

4

M.D'Elia




I How to define ¢

identification of ¢;;

1. compute limits of the flux conditions, x € ()4

4
- /I‘nﬂB51(x) 2 (u1(x) —ui(y)) p11(x,y) dy

1] 4

+—3 (u1(x) —u2(y)) ¢12(x,y) dy

4
701 Jr,nBs, (x)

= (w1 (x) — u2(y)) d21(y, x) dy = f1

4
T 05 I'nNBs, (x)

WM , 0—0

k1Vui-n; = kaVug-ng x el

M.D'Elia




I % M.D'Elial
How to define ¢ i
identification of ¢;; 5 I
—i(—a(n V) [ Pontds
1. compute limits of the flux conditions, x € ()4 o ; 0 5
q +(67) /O p¢11(p)dp+2(n-W2(X)> /0 p* ¢12(p)dp
o 2 (u1(x) —ui1(y)) o11(x,y) dy 51 l
1 JTanBs, () +((8) + (%) - uz(x))) / po12(p)dp)
4 .
I _ v)d Taylor expansion 5o
3 I i s S 5 (2(n- V) [ ooy

4 2
_|_m (u1(x) —u2(y)) ¢21(y,x)dy = f1 +(62) /06 p¢21(ﬂ)dp> =

2 Fnﬂ352 (x)

? 0—0

k1Vui-ny = kaVug'ng x el

P
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I How to define ¢

identification of ¢;;

1. compute limits of the flux conditions, x € ()4

&
7o}
L
7o}
4

T

_|_

/1; B 0 2 (ul (X) — U1 (y)) ¢11(x, y) dy
(u1(x) — u2(y)) dr2(x,y) dy

FnﬂBgl (x)

/F o (u1(x) — ua2(y)) ¢21(y,x) dy = fi1

I<61Vu1'n1 — K/QVUQ'DQ X € T

M.D'Elia
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\ 7 [\

/ F{oT(=) wz\

o
4
T 53
P
%W —

0—0
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I How to define ¢

identification of ¢;;
4

t
78} ( Ik 4(n i Vul(x)) /061 p*p11(p)dp ‘

1. compute limits of the flux conditions, x € ()4

S Al o /61 [ [\ 1 61
I\U%/jo POTT P e Z(n-Vuz(x)) i p* pr2(p)dp

4
—7 2 (u1(x) —u1(y)) ¢11(x,y) dy p
54 ’ T y [ '
7T41 I'nNBs, (x) 4'66'12'/ T X %\W
_ dy Taylor expansion i 82
51 (u1(x) — u2(y)) ¢12(x,y) : 2
701 Jr,nB;s, (x) +7T5§ (2(11 Vul(x)) i P21(p)dp
4

t 1 (u1(x) — u2(y)) p2(y, x) dy = f1 %@Tﬁﬁgﬁ-
T 02 Jr,NBs, (x) 0
0—0
? 0—0

2. determine kernel parameters

1 1

I

61 61 '

k1Vui-ng = koVug-ng x el 3501 2 =/ P da(p)dp -0 ko :/ pd12(p)dp ‘
0 0

52 52
C C
205 K1 = /O pPon(p)dp 65k = / ppa1(p)dp
0

3 2
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I How to define ¢

identification of ¢;; 1 5
7_‘_—5% ( = 4(1’1 -Vuy (X)) /0 p2¢11(p)dp

1. compute limits of the flux conditions, x € ()4

S Al o /I(sl [ [\ 1 61
I\U%//O POTT PP Z(n-Vug(x)) . p* pr2(p)dp

4
— 7 2 (u1(x) —u1(y)) ¢11(x,y) dy 5
4 ’ i)
701 Jrunms, (o) ittt i) \
4 | . 0
+— (u1(x) — u2(y)) ¢r2(x,y) dy IS el 4 62
765 Jrms, 00 = (2(n Vi) [ 2 om(o)ds

4

i (1w (%) = w2(y)) by, X) dy = fi T e
2 FnﬂB<;2 (x) 0

6—0
' 0—0
@
2. determine kernel parameters
: » 1 A 1 o
k1Vui-ng = KoVug-ng x el Applying conditions %55) Ky = / p 12(p)dp 2_05% Ka = / pg12(p)dp
0 0

52 52

C C

§5§’ K1 = / p*pa1(p)dp 555 K1 = / pg21(p)dp
0 0



I How to define ¢

identification of ¢;;

1. compute limits of the flux conditions, x € ()4

4
oy 2 (u1(x) —ui1(y)) p11(x,y) dy
T 01 JrpnBs, (%)
% (u1(x) — ua(y)) d12(x,y) dy Taylor expansion
T01 Jr,nBs, (x)
4
+— (u1(x) —u2(y)) p21(y,x)dy = f1

4
T 05 I'nNBs, (x)

' 0—0

k1Vui-ny; = keVus-ng x €T Applying conditions

M.D'Elia

(4 Tu) | S

01
/[ c2\ / [ [\ 1

01
i\U1/jO POTT PP Z(n-VuQ(x))/O p° Pra(p)dp

01
2\ ./ 7o\ i/
4'6‘5'1'/ T ) wz\k”) 1 P¢IZEFHF)
0

+7ri6§ (2 (n - Vul(x)) /062 p* da1(p)dp

02
%@W -
I ———————
What kernels satisfy

these conditions?

2. determine kernel parameters '

1 1

51 51
=Ry = / Poulp)do o8k = / o (p)dp

52 62

C C

§5§ K1 = / p*pa1(p)dp 555 K1 = / po21(p)dp
0 0



I How to define ¢

identification of ¢;; 1 5
7_‘_—5% ( = 4(n -Vuy (X)) /0 p2¢11 (p)dp

1. compute limits of the flux conditions, x € ()4

/'(51 51
'(J%>j POTTCP i 2(n-Vu2(x))/ p® ¢12(p)dp
4 0 0
5T 20— ) gy dy 2 -
1 JI'p,NBg, (x (E; - /wlll\ WA/W
4 1 (u1(x) (y)) ( ) Taylor expansion e : :
g | u1(x) — u2(y)) ¢12(x,y) dy 4 %2
7% Jewnss, 09 = (2(n Vi) [ 2 om(o)ds
4 02
V5T Ly (100 02O b3 x) dy = £ iyt
——————————————— '
What kernels satisfy
o
' 5—0 these conditions?
@
2. determine kernel parameters
k1Vup-ng = keVug-ng x €T Applying conditions 2D example:

¢12(X>Y) = %, $21(x,yb) = K1
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I Well-posedness of NIP

Equivalent formulation
1 2 1 2

E,== (Guy)“k(z,y)dydr + - (Guo)“k(x,y)dydz — fiuide — fausdx
2 JJa, 2JJa, o8 Qs

{1l
By = 1// (Gu)?k(z, y)dydx —/ fudx
2 QlUQQ §1U§2
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I Well-posedness of NIP

Equivalent formulation
1 2 1 2

E,== (Guy)“k(z,y)dydr + - (Guo)“k(x,y)dydz — fiuide — fausdx
2 JJa, 2JJa, o8 Qs

{1l
By = 1// (Gu)?k(z, y)dydx —/ fudx
2 QlUQQ §1U§2

||” Euler-Lagrange equations

// (Gu)(Gv)k(z,y)dydx = / fode YveV \_ 0
QU0 Q1UQ, !

I ——
coercive form = well-posedness




Numerical tests




I 1D test case: problem setting

K1 I K9
@ - e 9
—0.5 0 0.5
51 F‘n 52
r
® & - e ® o
_05—8 —05 0 0.5 0.5+ 85
¢11 ¢12 ¢21
i 2
kll(xay) = 3? ¢11(x7y) XBgl (w)(y) r < 05ay < 0.5
1
2
ki2(z,y) :== 353 ¢12(z,y) X, ()(y) 2 <0.5,y>0.5
1
k(z,y) =

2
ko1(x,y) := 353 ¢21(x,y) XBs, (2)(Y)
2

2
koo (z,y) = 353 P22(, y) XBs, (2)(Y)
2

x> 0.5,y <0.5

z> 0.5,y > 0.5

local domain

nonlocal domain

Gii(7,y) = ki
(/512(a:,y) = %
P21 (,y) = %

M.D'EIiaI
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I 1D test case: optimal h-convergence

Problem parameters Reference solution & error :

fi(z) = fo(x) =1, urcs: reference solution on a grid of size b,y = 2719 ‘
_ 1 1 i,.2 o 1 1,.2 C o

91(z) = 15 — §% — 327, 62(¥) = 35 — 347 ~ ¥ error: € = [[u — tres || L2(@100,)

01 :2_5, ) 22_4, ki=1, ko =3

h e order h  interface gap
27° 5.274e-5 3 §=0 6.497e-4
276 1.310e-5 2.009 g—b 4.227e-4
2-7 3.159e-6 2.051 =T 4.169e-4
278  7.610e-7 2.053 ;. 4.151e-4
279  1.879e-7 2.017 29 4.148e-4

L —



I 1D test case: optimal h-convergence

Problem parameters
fi(z) = f2(z) =1,
91(x) = 15 — 57 — 32% 62(x) = 75 — 337 — 52

01 :2_5, ) 22_4, ki=1, ko =3

h e order h  interface gap
27° 5.274e-5 3 §=0 6.497e-4
276 1.310e-5 2.009 g—b 4.227e-4
2-7 3.159e-6 2.051 =T 4.169e-4
278  7.610e-7 2.053 ;. 4.151e-4
279  1.879e-7 2.017 29 4.148e-4

stagnation: the gap
Is part of the solution!

optimal

Reference solution & error

urcs: reference solution on a grid of size b,y = 2719

error: e = |lu — Uref||L2(Qlqu)

M.D'EIiaI
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M.D'EIiaI
I 1D test case: 6-convergence
Problem parameters Local solution & error
Filz) = ble) =1, ur,: analytic local solution for k1 = 1, ko = 3
g91(x) = %6 - %x - %xQ, ga2(x) = % — ﬁx - %xQ error: er, = |lu —ur| L2(Q,u0,)
B — 9—11 I
01 0o er, order 01 0o er, order
2-% 9273 | 4701e-4 - 2-4 273 | 6.854e-4 -
275 2741 1623e-4 1534 27° 274 | 4.147e-4 0.725
2=6 92751 6.692e-5 1.277 2=6 92751 2249e-4 0.883
2-7 2761 3.109e-5 1.106 27 2761 1.167e-4 0.946
g8 . =7 11 516e-5: 1.035 28 277 1 5050e-5 0.972
279 9278 | 7520e-6 1.011 2-9 278 | 3.000e-5 0.988
2-10 991 3763e-6 0.999 2-10 991 1510e-5 0.990




M.D'EIiaI
I 1D test case: 6-convergence
Problem parameters Local solution & error |
Filz) = ble) =1, ur: analytic local solution for k1 = 1, ko = 3
g91(x) = %6 - %x - %xQ, ga2(x) = % — ﬁx - %x2 error: er, = |lu —ur| L2(Q,u0,)
B — 911 I
01 0o er, order 01 0o er, order
2—4 273 | 4701e-4 E 2—4 273 | 6.854e-4 -
275 274 | 1.623e-4 | 1.534 273 274 | 41474 NS
26 2751 6.692e-5 1277 26 2751 2249e-4 0.883
27 276131095 1.106 27 2761 1.167e-4 0.946
28 927 | 1.516e-5 [N 278 277 1 5050e-5 0.972
279 278 | 7520e-6 1.011 279 278 1 3.000e-5 0.988
2710 279 | 3.763e-6  0.999 2710 2791 1510e-5 0.990 i
the gap converges to 0 |

i e —
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I 1D test case: 6-convergence

Problem parameters Local solution & error
Filz) = ble) =1, ur,: analytic local solution for k1 = 1, ko = 3
g91(x) = %6 - %x = %x2, ga2(x) = % = ﬁx — %x2 error: er, = ||lu — uL||L2(QIUQQ)
B — 911 I
0.08
01 0o er, order 01 0o er, order
2-% 9273 | 4701e-4 E 2-4 273 | 6.854e-4 - 0.04
27% 274 [ 1.623e-4 FHS34 27° 274 | 4147e-4 NS
276 92751 6.692e-5 1.277 2=6 92751 2249e-4 0.883
2-7 92761 3109e-5 1.106 27 2761 1.167e-4 0.946 o
278 277 | 1516e-5 [ENSS 28 9277 | 5950e-5 0.972
279 9278 | 7520e-6 1.011 2—9 278 | 3.000e-5 0.988 |
2-10  9-9 | 3763e-6 0.999 2-10 9-9 | 1510e-5 0.990 004 [ I
the gap converges to 0 |

-0.08

P



M.D'EIiaI
I 1D test case: 6-convergence
Problem parameters Local solution & error
Filz) = ble) =1, ur: analytic local solution for k1 = 1, ko = 3
g91(x) = %6 = %x — %x2, ga2(x) = % — ﬁx - %x2 error: er, = ||lu — uL||L2(QIUQQ)
B — 911 I
01 0o er, order 01 0o er, order \I\
2—4 273 | 4701e-4 E 2—4 273 | 6.854e-4 - |
275 274 | 1.623e-4 | 1.534 273 274 | 41474 NS
26 2751 6.692e-5 1277 26 2751 2249e-4 0.883
27 276131095 1.106 27 2761 1.167e-4 0.946
28 927 | 1.516e-5 [N 278 277 1 5050e-5 0.972 —r R
279 278 | 7.520e-6 [N 279 278 | 3.000e-5 0.988 —5, =273 6§, =22
= = —10 -9
2710 279 ] 3.763e-6  0.999 2710 279 | 1.510e-5 (10.990 —5, =255, =24 )
the gap converges to 0 -6 =2""6=27° I
_(51 = 2—9 52 = 2_8

P



Future work




Our plan

l

Nonlocal interface theory

Virtual interfaces

Nonlocal
Domain
Decomposition

Two-domain

|||| Multi-domain

!

l

Physical interfaces

I

Fractional capability

l

Advection capability

Applications
Subsurface .
b AifUsion Mechanics
Subsurface
—# transport
Damage
mechanics

Subsurface
CO2 dispersion

M.D'EIiaI
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I Domain Decomposition for fast computations

Fact: the numerical solution of NLM can be prohibitively expensive

Proposed approach: mimic local DD technique FETI and certify its validity with MATNIP

Local FETI: solution of the saddle-point problem

L(vh v2, :LL) — El(vh UQ) T f]_“(vl T UQ)/'L
equivalent to (LIP)! — (LIP) used to certify properties of FETI

nFETI: solution of the nonlocal saddle-point problem
L<vla U2, M) — En(vb UQ) + an (Ul - UQ):M

equivalent to (NIP)?? — (NIP) is a fundamental tool for nonlocal DD

M.D'EIiaI

Y

creation of virtual interfaces |
by domain decomposition

)

Ql N < QZ

enabling parallel solvers
— speed-up

first scalable DD solvers
and preconditioners

Outcome: nFETI could drastically increase the usability of NLMs, currently hindered by prohibitive costs
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