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WHAT is a nonlocal model?

WHY do we need an interface theory?
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1 inode_H .pture elects PDE:s. des.cribe

Basic concepts:

• The state of a system at any point depends on the state in a neighborhood of points

- interactions can occur at distance, without contact

Solutions can be irregular: non-differentiable, singular, discontinuous
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Basic concepts:

• The state of a system at any point depends on the state in a neighborhood of points

- interactions can occur at distance, without contact

Solutions can be irregular: non-differentiable, singular, discontinuous
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e.g. fractional differential equations 

Percentage of damage in nonlocal

III 

Anomalous behaviors such as superdiffusion and subdiffusion 
, contact mechanics. Littlewood, SNL

p
MSD superdiffusion: tc ' , a > 1

standard diffusion: t

/".....'"
subdiffusion: ta, a < 1

r-- nonlocal models provide an improved predictive capability for

fracture mechanics

subsurface flow

plasma

stochastic jump processes

image deblurring/segmentation

heat conduction
Mean Square Displacement vs time:

broader spectrum of diffusion processes
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Nonlocal operators (simplest setting)

Lu(x) = f B (x)(u(x) — u(y))k(x, y)cly, , where

integral form: catch long-range forces and reduce regularity requirements

• Lu Au as 6 0: convergence to classical diffusion for vanishing nonlocality

• k (x , y): application dependent kernel

M.D'Elia



M.D'Elia

1\ion1oc.d inode] i n one •forrnu.1.)

Nonlocal operators (simplest setting)

Lu(x) = f B (x)(u(x) — u(y))k(x, y)cly, , where

integral form: catch long-range forces and reduce regularity requirements

• Lu Au as 6 0: convergence to classical diffusion for vanishing nonlocality

• k(x , y): application dependent kernel

Nonlocal diffusion

— Lu = f xeQ

+ conditions on Qi

DIFFERENT FROM PDEs!

"Nonlocal boundary conditions"

are prescribed on a layer

surrounding the domain

volume constraints

B (x)
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Cii-r.dienge .7:LH go::-)k-i

Modeling challenges Numerical challengee

• prescription of nonlocal boundary conditions • discretizations and their implementation

r unknown model parameters design of efficient scalable solvers

treatment of nonlocal interfaces 

lack of a rigorous nonlocal interface theory, required for

handling of material discontinuities physical interfaces

design of domain-decomposition solvers for efficient simulations —.virtual interfaces

Our goal:

development of a mathematically rigorous and physically consistent theory s.t.

Nonlocal transmission conditions yield well-posed interface problems

Nonlocal interface problems recover classical formulations in the local limit F Fn
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1 How -,-)re interizice . treated right now?

• Theory: existing mathematical approaches fail to establish rigorous theoretical foundations

—> loss of uniqueness

loss of consistency at the local limit

• Simulationr several discretizations/implementations are ad hoc and heuristic

spurious modes, oscillations, mass loss, numerical convergence deterioration

M.D'Elia



1 How -,-)re interizice . treated right now?

• Theory: existing mathematical approaches fail to establish rigorous theoretical foundations

—> loss of uniqueness

loss of consistency at the local limit

• Simuladonr several discretizations/implementations are ad hoc and heuristic

spurious modes, oscillations, mass loss, numerical convergence deterioration

Novelty of our work

We derive the nonlocal interface formulation from energy principles

We enforce convergence to local limits

We ensure existence of a unique solution

M.D'Elia
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1 A Nonlocal Vectgr C:;;Ard-u]w).
• generalization of the classical vector calculus to nonlocal operators

• allows us to study nonlocal diffusion similarly to the classical, local, counterpart

• based on the concept of nonlocal fluxes

Nonlocal operators acting on u(x): Rd —> R and v(x,y): -Rd x

• divergence of v: D(v)(x) =
/7,

• gradient of u: g(u)(x,y) = (u(y) — u(x))a(x, y) = G(x, y)a(x, y)

• nonlocal diffusion of u: Lu(x) = D(gu(x))

Lu(x) = 2 f (u(y) — u(x)) a(x, y) • a(x, y) dy

d

(v(x, y) v(y, x)) • cy(x, y) dy

Lu(x) = (u(y) — u(x)) k(x, y) dy = Lu(x)
Rn
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• based on the concept of nonlocal fluxes

Nonlocal operators acting on u(x): Rd R and v(x, y) : -Rd x

• divergence of v: D(v)(x) = (v(x, y) v(y, x)) • a (x, y) dy

• gradient of u: g(u)(x,y) = (u(y) — u(x))a(x, y) = G(x, y)a(x, y)

d

• nonlocal diffusion of u: Lu(x) = D(gu(x))

Lu(x) = 2 f (u(y) — u(x)) a(x, y) • a(x, y) dy
IRn

Lu(x) = (u(y) — u(x)) k(x, y) dy = Lu(x)
Rn
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The nonlocal operator L is a
composition of divergence and

gradient use variational theory
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•_Inpiried Loc-,-d _InterfEice ProbJer:wi- (LIP)

LIP formulation derived from energy principles

Energy minimization

min E1 = 
1 
- (Vui)2dx - 

1
k2 (V212)2dx — fluldx f2u2dx

2 2 i-22

with (tt1 , u2) E x HI-(-(22)
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1 lITipired toc-,-d _Inter faice P-robJerni- (LIP)

LIP formulation derived from energy principles

Energy minimization

min E1 = 
1 
- (Vui)2dx - 

1
k2 (V2i2)2dx — fluldx f2u2dx

2 2 i-22

with (tt1 , U2) E H1(i-21) x H1 (-(22)

Optimality conditions

-V(ftiVui) = fil

-V(k2Vu2) - f21
= u2 x E F

klVul•nl = k2Vu2-112 X E F

❑
❑

modeling choice

outcome of the optimization

® 1
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1 'Impired inteff-_-,Jce P:robJerri (LIP)

LIP formulation derived from energy principles

Energy minimization

min E1 = — 
2 

1 
f

-2-1

Optimality conditions

-7(kiVui) =

—V(k2Vu2) f21

2 1dx + k2f Q2 

x E

x E C22 ❑

u1 = u2 x E F

klVul • nl = k2Vu2-n2 X E F

2 dx — fluidx — f2u2dx
Qi Q2

modeling choice

outcome of the optimization

1®
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Fn

1



1 ILlordocEd _Interizice Prob_lerni (LIJP)
NIP formulation derived from energy principles

Energy minimization

min En= 
1 
— ff (Gui)2 k(x , y)dydx — 

1
(Gu2)2 k(x , y)dydx

2 --21 2 6
-2

f luidx — f2u2dx
C21

1®
C22
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1 ILlordocEd _Interizice Prob_lerni (LIJP)
NIP formulation derived from energy principles

Energy minimization

min En= 
1 
— ff (Gui)2k(x,y)dydx — 

1
(Gu2)2k(x,y)dydx

2 --21 2 -6
-2

Optimality conditions

❑ —L1u1 =

• —L2u2 = f2,

u1 = 2.62 x E rn

Ni(ui) — N2 (u2) = N*(2.61~ u2) f

fiuidx — f2u2dx
C21 C22

E Fn

®
C22

M.D'Elia I
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1 INDIAIDcal I_Intaff7s-ice P.rDb_lern (LIJP)

NIP formulation derived from energy principles

Energy minimization

min En = 
1 
— (Gui)2 k(x , y)dydx — 

1
(Gu2)2 k(x , y)dydx

2 --21 2 6

Optimality conditions

—L1u1 = f 1_, x E C-21

• -I/2 ti2 - f2 X E

[I] ul = u2 xE rn

f luidx — f2u2dx
C21 C22

Lv71(ul) - N2(u2) = N.(ui,u2) + f x E Fn
take the limit as 6 —> 0

rik VII, 1 -n1 = k2Vu2 • n2 local flux condition

®
Q2
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1 INDIAIDcEd I_Intaff7s-ice P.rDb_lern (LIJP)

NIP formulation derived from energy principles

Energy minimization well-posed ness

min En = 
1 
— ff (Gui)2 k(x , y)dydx — 

1
(Gu2)2 k(x , y)dydx

2 --21 2 6

Optimality conditions

—L1u1 = fl, x E SZl

• ti2 - f2 X E

[11 ul  = U2 x E rn

LA:r1(ul) — N2(u2) = Ac(ui,u2) f
take the limit as 6 —> 0

f luidx — f2u2dx
C21 C22

E Fn

®
Q2
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1 INDIAIDcal I_Intaff7s-ice P.rDb_lern (LIJP)

NIP formulation derived from energy principles

Energy minimization well-posed ness

min E n = 
1 
— ff (Gui)2 k(x , y)dydx — 

1
(Gu2)2 k(x , y)dydx

2 -,21 2 6
-2

Optimality conditions

—L1u1 = fl, x E SZl

• -L2 ti2 - f2 X E

tti = u2 x E rn
1:11 LA:r1(ul) — N2(u2) = Ac(ui,u2) + f

take the limit as 6 —> 0

= k2Vu2.n2

f luidx — f2u2dx
C21

E Fn

local flux condition consistency

1®
Q2

M.D'Elia I

F Tn

What is the KEY?

definition of the

kernel function

across the interface
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1 How to define the kernel across the interface
A piecewise definition of the kernel function:

kii (x, y) := COO OH (x, y) xB,, (30(y)

ki2(x, y) := C (S1) 012 (x, y) X13,51 (x) (37)
k(x, y) =

k21(x, y) := C(62) 021 (x 1 37) XJ3,52 (30 (30

k22(x, y) := C(62) 022 (xl 37) X/3,52 (x) (y)

0 symmetric

III symmetric

Di non-symmetric

M.D'Elia I
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1 1 !FInsm to define Cne kernel !_arn-oss the interface

A piecewise definition of the kernel function:

kii(x,y) := C(61) 011(x, y) X 13 61 (x) (y)

ki2(x, y) := C(61) 012(x, y) X B (x) (3)
k (X y) _

k2i(x,y) := C(62) 021 (X, y) X 5 52 (x) (3)

k22(x, y) := C(62) 022 (x7 y) XB,52 (x) (y)

❑ 21

M.D'Elia I

how do we define 4)?

❑ symmetric

symmetric

Ei non-symmetric

1
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1 How to define (I)

k(x, y) ={
kii (x, y) := C(61) On (x, y) XB6i (30 (y)

ki2(x, y) := C(61) 012 (x, y) X/36, (,c)(y)

k2i (x, y) := C(62) 021 (3C, y) x/362 (x)(y)

k22(x, y) := C(62) 022 (X, y) XE3,2 (c) (3)

definition of c/),ii,

kernel functions Oji must be such that as 6 —4 0

= fi

-L2u2 = f2

-V( ki V ui) = fi

V( V— ,k2 u2) = f 2

x E y E

x E -61,y E

x E y E

E 22,y E -621

the nonlocal equations in the separate domains

converge to the local equations for 6 —~ 0

M.D'Elia I
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III I How to define 0

{ kll (x, y) := 0: ) (, ) 50 On (x,y) X:: )c ((x)(y), 

:= 

)

k21(x,y) := C (82) 021 (xl y) X1352(3)(3)

k22 (x, y) := C(62) 022 (xly) X/352 (x) (y)

11

k(x, y) =

definition of

kernel functions Ozi must be such that as 6 —+ 0

—L1u1 = fi

—L2u2 = f2

-+ —V (ki Vui) = fi

(k2 Vt12) f2

xESZl

xESZ2

the nonlocal equations in the separate domains
converge to the local equations for 6 —> 0

condition: lim 2 f kii(x,y)(ui(x) — ui(y))dy = —kiAui
si-÷0 Qi

2D example*: C(62) =  
4
41 y) =

716i
next step: determine Oij

M.D'Elia I

1

1

1
*with Euclidean neighborhoods -



1 How to define 0

k(x, y) ={
kii (x, y) := C(61) On (x, y) XE361(30 (y)

ki2(x, y) := C(61) 012(x, y) xBoi (x) (y)

k2i (x, y) := C(62) 021(x, y) XE362 (3c) (y)

k22(x, y) := C(62) 022 (x, y) xi3,52 (x) (y)

identification of cl)ij

1. compute Iimits of the flux conditions

Ni (ui) — N2 (u2) = N. (ui , u2) +f x E Fr,

2. determine kernel parameters such that the limit is

klVui •ni = k2 Vu2 •n2 x E F

M.D'Elia I

1

1
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1 How to defina
identification of c/Jii

1. compute limits of the flux conditions, x E SZl

4 
2 (ui (x) — /Li (30) (x, y) dy

71 6'11, n nB61 (x)

4

6Li rnnBoi(x)(ui(x) 

— u2(y)) 012 (X) y) dy

4
(ui (x) — u2 (30) 021(y) x) dy = fi

r nnB (52 (x)

M.D'Elia I
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1 How to defina
identification of c/Jii

1. compute limits of the flux conditions, x E SZl

4 
2 (ui (x) — /Li (30) (x, y) dy

71 6'11, nnB61 (x)

4

6Li rnnBoi(x)(ui(x) 
— u2(y)) 012 (x, y) dy

4 
(ui(x) — u2 (30) 021 (y) x) dy = fi

frnnB,52(x)

K1Vu1 •n1 = ft2Vu2.112 x E F

M.D'Elia I
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1 Hpw tg defina
identification of c/Jii

1. compute limits of the flux conditions, x E SZl

4

6.'1,
2 (ui (x) — /Li (3)) (x, y) dy

1:',,nB(51(x)

746L1 rnnBö1 (x)

4

7r (Sz 1:',,nB,52(x)

7

(ui (x) — u2 (3)) 012 (X, y) dy

(tti (X) — U2 (Y)) 021 (y) 3C) dy = fl

KiVurni = ft2Vu2 • n2 x E F

Taylor expansion

4
0( 4 (n Vui (x)) 

0 
p2011(p)dp

(51
+(q) I pOii(P)dp+ 2 (n • Vu2 (x)) 

0 
p2 012 (p)dp

61

+ (On + (21,1 (X) u2 (x))) p012(p)dp)

4 62
+ S2 (2 (n • Vui (x)) o p2 021 (p)dp

r(52
+(S2) Jo ,0021(0)dio) =

M.D'Elia I
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1 How to defina
identification of c/Jii

1. compute limits of the flux conditions, x E SZl

4

7r

4

.r”

4

(Sz

2 (ui (x) — (y)) (x, y) dynB(51 (x) 

nnBöl(x)

(x)

(ui (x) — u2 (3)) 012(x, y) dy

(tti (X) U2 (Y)) 021(y) 3C) dy = fl

KiVurni = ft2Vu2 •n2 x E F

Taylor expansion

4 
\ /81

 ( 4 (n • Vui (x)) P2011(p)dp6'11_ A
61 \

-I (4) 1 11(P)dp 27711.1100) p2 012 (p)dp
0 0

rS1
2
i

4

12

o

(2 (n • Vut (x)) p2 021(p)dp
0

62

I (Si) f /041 (A),-/P) —

M.D'Elia I
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1 How to defina
identification of c/Jii

1. compute limits of the flux conditions, x E SZl

4

• 6'1,

4

.• r”

4

• (Sz

2 (ui (x) — (y)) (x, y) dynB(51 (x) 

nnBöl(x)

(x)

(ui (x) — u2 (3)) 012(x, y) dy

(tti (X) — U2 (Y)) 021(y) 3C) dy = fl

KiVurni = ft2Vu2 •n2 x E F

Taylor expansion

f 81

746,11_ ( 4 (n • Vui (x)) o P2011 WO
A

61 (51

-I (4) 1 11(P)dp 27711.1100) p2 012 (p)dp
0

rb1
2
i

4

12

o

(2 (n • Vui (x)) p2 021(p)dp
0

f82

I (Si) /041 (A),-/P) —

2. determine kernel parameters

61x3 /

ul K2 — p2012(p)dp
3c 0

= f
62 
P2021(10)0

3 0

M.D'Elia I

sl

2c 

f

61
2 

K2 = /9012(0)dp

0

62
2

ki = 1 p021(10)dp

1

1
1



1 Hpw tg defina
identification of c/Jii

1. compute limits of the flux conditions, x E SZl

4 

frnnB61 (x) 2 (ui (x)
7T (5`11, 

— (3)) (x, y) dy

4 
(ui(x) — u2(y)) 012(x, y) dy

6Li rnnsoi(x)

4 

4 (ui (x) — U2 (Y)) 021(y) dy = fi+ 

fr n Bö 2 (x)

Taylor expansion

r(51

4 ( 4 (n Vui (x)) P2011(10)0
7r 61 o A

61 (51
-I (SD 1 I-411(P)dp + 2 7711.1100) p2 012(p)dp

rbi

4

12

0

(2 (n • Vut (x)) p2 021(p)dp
0

r52
I (Si) /041 (A),-/P) —

M.D'Elia I

1

—> 0 

—> 0

1

•

KiVurni = ft2Vu2.112 x E F Applying conditions

2. determine kernel parameters

/61

3C61 K2 — 
192 012(p)dp

0

1 2 /61

2C 61 K2 — 
19012(0)dp

0

r62
= 192 021(p)dp

23 
= 1

.62 

19021(p)dp
1



1 Hpw tg defina
identification of c/Jii

1. compute limits of the flux conditions, x E SZl

4 
2 (ui (x) — /Li (y)) (x, y) dy

(5Li. frnaB(51(x)

4 
(ui (x) — u2 (y)) 012 (XI y) dy

6Li r ,nsoi(x)

4
(ui (x) — U2 (Y)) 021 (y, x) dy = fi

frni1B,52(x)

Taylor expansion

M.D'Elia I
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6'1
( 4 (n • Vui (x)

81

P2011(0)0
A

6, (51

-I (4) 1 14 11 (P)dp 27711.110c) p2 012(p)dp

2

4

12
0

(2 (n • Vui (x)) p2 021(p)dP

62

I (Si) f /041 (A),-/P) —

What kernels satisfy

—> 0 
these conditions?

•

KiVurni = ft2Vu2 •n2 x E F Applying conditions

2. determine kernel parameters

1 
161 

1 slr 2 f

3cv1 
K2 — P2 012 (p2c K2 —

)dp P012(p)dp

/82 62

—
3 
62
3 

P29521 (p)dp 2
= —(54ki=f p021(p)dp

1
■

1



1 How to defina
identification of c/Jii

1. compute limits of the flux conditions, x E

4 
2 (ui (x) — /Li (y)) (x, y) dy

(5Li. frnaB(51(x)

4 
(ui (x) — u2(y)) 012 (XI y) dy

6Li r ,nsoi(x)

4
(ui (x) — U2 (Y)) 021 (y) dy = fi

frni1B,52 (x)

Taylor expansion

4

61_
( 4 (n • Vui (x)

61

A
192 011(P)dio

6, (51

-I (4) 1 14 11 (P)dp 27711.110c) p2 012 (p)dp

2

4

12

0

(2 (n • Vui (x)) p2 021 (p)dP

62

I (Si) f /041 (A),-/P) —

What kernels satisfy

—> 0 
these conditions?

•

K1Vu1 •n1 = ft2V 212 .112 x E F Applying conditions

2. determine kernel parameters

2D example:

K2
012(X1 3T) 021(3(10) = K1

M.D'Elia I
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1 •)f NIP

Equivalent formulation

En fk(Gui)2 k(x , y)dydx 
1 
1,22 (Gu2)2 k(x , y)dydx — kfiuidx — f2u2dx

Q2

En
f f

2 .miuci2 (Gu)2 k(x , Wydx fudx
Q1uQ2

Q2 r

M.D'Elia



1 •)f NIP

Equivalent formulation

En = — 
1 
f (Gui)2 k (x , y)dy dx — 

1
I f (Gu2)2 k(x , y)dydx —

2 2

En, = 12 flQiu2(Gu)2 k(x , y)dy dx — I fudx
2

Euler-Lagrange equations

11. (Gu)(Gv)k(x , y)dy dx fvdx Vv E V21uQ2
Q11--422

coercive form —> well-posedness

1u1dx — f2u2dx
Q2

M.D'Elia I
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Numerical tests

00

 o



1 probkm

• 

-0.5

bl

• 

—0.5 —

•
k2

 •

0 0.5

Fr,
62

-0.5

k(x,y) =

0

011 012 021 022

,
(x, y 

2
) := 3q_ On (x, y) XB6, (x)(y)

k12(x, y) := 3 
2
q_ 012 (xl y) X,661 (x)(y)

k21(x, y) :=  
2

021(x, y) XE3,52 (X) (y)

k22(x, y) :=  
2

022 (xl y) XE362 (x)(y)

0.5 0.5 + 62

x < 0.5, y < 0.5

x < 0.5, y > 0.5

x > 0.5, y < 0.5

x > 0.5, y > 0.5

local domain

nonlocal domain

Oii(x y) = ki

012(x, y) =

021(x, y) =

M.D'Elia I

1
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1 ID optimal 1-i-convergence

Problem parameters

fi(x) = f2(x) = 1,

Reference solution & error

Urej reference solution on a grid of size href = 2-13

gl 
 (x) x16 8 2 ' 
,7,2= — i — ') 16 24 x 

 
6 x

2 error: e =32 

= 2-5, 62 = = 1, K2 = 3

h e order h interface gap
2-5 5.274e-5 2-5 6.497e-4
2-6 1.310e-5 2.009 2-6 4.227e-4
2-7 3.159e-6 2.051 2-7 4.169e-4
2-8 7.610e-7 2.053 2-8 4.151e-4
2-9 1.879e-7 2.017 2-9 4.148e-4

U — Uref 11 L2 (C2iL -22)

M.D'Elia I
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1 ID optirrial n-convergence

Problem parameters

fi(x) = f2(x) = 1,

Reference solution & error

Urej reference solution on a grid of size href = 2-13

gl 
1 1(x) x16 8 2 "' 
,7,2 = — i — '`') 16 24 x 

 
6 
x2 error: e =32 

= 2-5, 62 = 2-4, = 1, K2 = 3

h e order
2-5 5.274e-5
2-6 1.310e-5
2-7 3.159e-6
2-8 7.610e-7
2-9 1.879e-7

2.009
2.051
2.053
2.017

h interface gap
2-5 6.497e-4
2-6 4.227e-4
2-7 4.169e-4
2-8 4.151e-4
2-9 4.148e-4

optimal stagnation: the gap
is part of the solution!

U — Uref 11 L2 (C2iL -22)

M.D'Elia I
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r"-.1 -ieff, conver:,ence

Problem parameters

fi(x) = f2(x) = 1,

(x) = 1 -16

h — 2 —11

,r ,r2 n (,r) 1 1 ,r
8' 2' .v2YA') 16 24"'

61
2
2-5
2-6
2-7
2-8
2-9
2-10

62

2
2-4
2-5
2-6
2-7
2-8
2

1 x2

Local solution & error

uL: analytic local solution for kJ_ = 1, k2 = 3

error: eL =

eL order bl 6 eL order
4.701e-4 2 2 6.854e-4
1.623e-4 1.534 2-5 2- 4.147e-4 0.725
6.692e-5 1.277 2-6 2-5 2.249e-4 0.883
3.109e-5 1.106 2-7 2-6 1.167e-4 0.946
1.516e-5 1.035 2-8 2-7 5.950e-5 0.972
7.520e-6 1.011 2-9 2-8 3.000e-5 0.988
3.763e-6 0.999 2-16 2— 1.510e-5 0.990

L2 (Q1uQ2)

M.D'Elia I
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1 t P.at r";.1). Pff, Fi-ros-PiPrgPrire

Problem parameters

fi(x) = f2(x) = 1,

1 ,, 1 ,,2
g1(X) = 16 8' 2" g2X) - 16  24X  6

X2

h — 2-"

61
2
2-5
2-6
2-7
2-8
2-9
2-10

62

2
2-4
2-5
2-6
2-7
2-8
2

Local solution & error

uL: analytic local solution for kJ_ = 1, k2 = 3

error: eL =

eL order bl 6 eL order
4.701e-4 2 2 6.854e-4
1.623e-4 1.534 2-5 2- 4.147e-4 0.725
6.692e-5 1.277 2-6 2-5 2.249e-4 0.883
3.109e-5 1.106 2-7 2-6 1.167e-4 0.946
1.516e-5 1.035 2-8 2-7 5.950e-5 0.972
7.520e-6 1.011 2-9 2-8 3.000e-5 0.988
3.763e-6 0.999 2-19 2- 1.510e-5 0.990

the gap converges to 0

L2(Q1uS22)
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I 'ID .tcLI,at r-,-.) .,-,-LI:', 6-.ropp1prigpfjr?

Problem parameters

fi(x) = f2(x) = 1,

(x) 
16 8' 
1 , 1 

2X 
2 1 2

g2 (X) =  16 24 6 X

h — 2-11

61
2
2-5
2-6
2-7
2-8
2-9

62

2-10

2
2-4
2-5
2-6
2-7
2-8
2

eL order

Local solution & error

uL: analytic local solution for kJ_ = 1 , k2 = 3

error: eL =

6 b2 eL order
4.701e-4 2 2 6.854e-4
1.623e-4 1.534 2-5 2- 4.147e-4 0.725
6.692e-5 1.277 2-6 2-5 2.249e-4 0.883
3.109e-5 1.106 2-7 2-6 1.167e-4 0.946
1.516e-5 1.035 2-8 2-7 5.950e-5 0.972
7.520e-6 1.011 2-9 2-8 3.000e-5 0.988
3.763e-6 0.999 2-1° 2- 1.510e-5 0.990

the gap converges to 0

L2(Qiu122)

0.08

0.04

0

-0.04

-0.08
-0.5

—61 = 2-3 62 = 2-2
= 2-5 62 = 2-4
= 2-7 62 = 2-6

—61=2-9 62=2-8

x 0 0.5
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I 1 D .tP.at r";.1).?", b- r on v Prig Pr) c e

Problem parameters

fi(x) = f2(x) = 1,

Local solution & error

uL: analytic local solution for Ki = 1, /C2 = 3

gi(x) 1
16

1 
8
,,
-"

1 
2X 

2 1g2(x)= — -16
1
24X

1 2 ,r
6- error: eL=11u-uL L2(Q1u02)

h - 2-11

61

2
2-5
2-6
2-7
2-8
2-9
2-10

62

2
2-4
2-5
2-6
2-7
2-8
2

eL

4.701e-4
1.623e-4
6.692e-5
3.109e-5
1.516e-5
7.520e-6
3.763e-6

order 61_
2-
2-51.534

1.277 2-6

1.106 2-7

1.035 2-8

1.011 2-9

0.999 2-1°

62

2
2-
2-5
2-6
2-7

2-8
2-

eL order
6.854e-4
4.147e-4 0.725
2.249e-4 0.883
1.167e-4 0.946
5.950e-5 0.972
3.000e-5 0.988
1.510e-5 0.990

the gap converges to 0

= 2-3 62 = 2-2
= 2-5 62 = 2-4
= 2-7 62 = 2-6
= 2-9 62 = 2-8

o

M.D'Elia I

1





I OUP _plan

Virtual interfaces

Nonlocal
Domain

Decomposition

Two-domain

Multi-domain

cZ

Nonlocal interface theory

Fractional capability

Advection capability

Physical interfaces

Applications

Subsurface
diffusion

Subsurface
transport

Subsurface
CO2 dispersion

Mechanics

Damage
mechanics

M.D'Elia



7 7 7

.2! .2.

1 'for CD rriputation

Fact: the numerical solution of NLM can be prohibitively expensive

Proposed approach7 mimic local DD technique FETI and certify its validity with MATNIP

Local FETI: solution of the saddle-point problem

(vi, v21 it) = v2) + f,(vi — v2),a

equivalent to (LIP)! (LIP) used to certify properties of FETI

nFETI: solution of the nonlocal saddle-point problem

v2„u) = En (vi, v2) + frm (vl — v2),a

equivalent to (NIP)?? (NIP) is a fundamental tool for nonlocal DD

M.D'Elia

creation of virtual interfaces
by domain decomposition it

enabling parallel solvers
speed-up

(first scalable DD solvers
and preconditioners

Outcom& nFETI could drastically increase the usability of NLMs, currently hindered by prohibitive costs



QUESTIONS?

Sandia
National
Laboratories

MATN1P

- • r

066%4 Nesa
Sandia National Laboratories is a

multimission laboratory managed and
operated by National Technology and
Engineering Solutions of Sandia LLC, a
wholly owned subsidiary of Honeywell

International lnc. for the U.S.
Department of Energy's National

Nuclear Security Administration under
contract DE-NA0003525.


