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2  Outline

• What is GMLS?

• Applications:

• #1: mesh-"hardened" DG scheme

• #2: meshfree mimetic divergence

• Conclusions
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3  A GMLS tutorial

Generalized Moving Least Squares (GMLS) is a non-parametric regression for dual spaces

Statement of the GMLS problem: Given

, v*

P = span{piV=1 C V

A = C V*

co :V*xli*R

- a function space and its dual

- a finite dimensional "consistency" space (usually polynomials)

- a finite set of sampling functionals:

- a correlation measure between functionals

For every i E V* (target) find an approximation i E V' given by

f(u) = Eai(r-)Ai(u)
{f(p) = r(p) VP E P

such that coer, X, ) = 0 ai(r) = 0

Ila(r)1 Vr EV*

- P-reproducibility

- local support

- uniform boundedness

H. Wend(and. Scattered data approximation, Vo(. 17. Cambridge university press, 2004.
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4  A GMLS tutorial

Theorem. The GMLS coefficients a i(r) E R solve a (local) Quadratic Program (QP):

. 1
mi n—

ct ?' (r)
such that Eai(rg(p) = r(p) Vp E P

a(r) = [ai(t-)] E RN -r(p)= (p )] E RQ L = [A1(pi)] E RQXN

w(r,i1.7)2 i=1 W(r)= diagfroe E RN'N u = (u)] E RN- sample vector

Algebraic form of the QP

minla(r)TW-1(r)a(r) such that LAO-) = r(p)
2

GMLS approximation of the action of E V on u E V :

f(u)= UT [W(r)LT (LW (r)LT) 1 r(p)]= uTa(r)

GMLS basis form: sum of field samples Ai (u).

The coefficients b(r) solve an algebraic WLS problem:

QP solution: GMLS "basis" functions

a(i) = W(r)LT (LW (r)LT )1 r(p)

We can also group the terms as follows

(u) =iuTW (r)LT (LW (r)LT ) 11r (p) = b(r)Tr(p)

b(r)= argmin-
1
(LT c—u)T W(r)(LT c—u)= argmin-

1 
c 

2

CERN 2 CERN 2 W(r)



5 GMLS is not a polynomial regression!

Example: field approximation from point values

[Not a polynomial! * pr(x)=b,(x)pi(x)
i-1

X

• 00 • • • • • • • • • • • • • • • • •• • • • • • • • • •

Xi
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A polynomial basis function

A coefficient depending on the spatial location

— — — • Exact

  "Frozen" GMLS

  GMLS approximant

Figure credit: M. Perego

This is non-parametric regression of the data: approximant not known

in closed form but can be effectively computed at any given point.
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6 Application # 1 : "mesh-hardened" DG

What is the problem? Finite Element Methods (FEM) work best on shape-regular meshes. But...

Sometimes we have no choice but compute on highly
distorted meshes as in Lagrangian and ALE hydro codes:
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014401..024e4Vs•
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OA

Tzanio Kolev (BLAST hydro code, LLNL), M. Shashkov (LANL)

Generation of high-quality grids can take up to 75% of the
total time-to-solution (Dart System Analysis: SAND2005-4647)

http://cubit.sandia.gov



7 What can we do about this problem?

Problem:

FEM solution quality depends on shape function quality:

Quality of standard FEM shape functions is tied to mesh quality

Solution:

Divorce shape function quality from the mesh quality!

How can we do this?

Go Mesh less!

SAN D2019-XXXX C

I. Babuska and A. Aziz. On the angle condition in the finite element
method. SIAM Journal on Numerical Analysis, 13(2):214-226, 1976

• We will use the mesh only for integration which can be done accurately even on a bad mesh

• We will extend Generalized Moving Least Squares (GMLS) to approximate bilinear forms

1



8 A little bit of history

The GMLS "basis" functions ai(r) have been used

as FE shape functions by Nayroles (1992), Belytschko

(1994), Atluri (1998), Mirzaei (2013) and others.

However, ai(r) is non-polynomial and requires

expensive quadrature.

J.S. Chen uses under-integration to avoid this

problem and obtain computationally efficient

methods for large deformation solid mechanics.

However, under-integration introduces

instabilities and requires development of

problem-specific stabilization techniques.
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A (G)MLS shape function and its derivative for Gaussian and
regularized (D(.,.) and a standard P1 shape function on triangles.

T. Most, C. Bucher, Structural engineering and mechanics, 21/3, pp.315-332

Chen, J.S., Hillman, M., Rüter, M.: An arbitrary order variationally consistent integration for

Galerkin meshfree methods. Int. J. Num. Meth. Engrg. 95(5), 387— 418 (2013).

Chen, J.S., Wu, C.T., Yoon, S., You, Y.: A stabilized conforming nodal integration for Galerkin

mesh-free methods. Int. J. Num. Meth. Engrg. 50(2), 435-466 (2001).



9 I Extension of GMLS to approximation of bilinear forms

An abstract setting: Consider a variational problem set in a Hilbert space V:

seek u E V such that a(u, v) = f(v) for all v E V

f(.) is a linear functional can use GMLS to approximate it:

a(•,.) is not a linear functional so GMLS does not readily apply.

How can we extend GMLS? Here's the key idea:

SAN D2019-XXXX C

Vx V —> IR; f(.): V —> IR

f(v) f (v) b(v) • f (p)

a(u, v) Ci(u, v) := b(v) • a(p, p) • b(u).

• Holding the test function v E V fixed gives a linear functional avO := a(•,v)

A

• Holding the trial function fixed gives another linear functional au(•) := a(u,.)

seek u E RN such that b(v) • a(p, p) • b(u) = b(v) • f (p) for all u E RN The (global) discrete problem



10 Application to a model PDEs: I. Setup

1. Variational problem

seek u E V such that a(u, v) = f (v) for all v E V

representing a weak form of -E.iitt b • Vu = f in 12 and u = 0 on F

2. FE mesh f2h with elements fkkI lthat may be low-quality.

3. A quadrature rule on each element that is exact for linear fields.

4. A point cloud X''7 c 0 comprising points {x2}iN21.

• No relationship assumed between the mesh and point cloud.

• Of course, mesh nodes can be points in the cloud.

• We seek an approximate solution on the point cloud, not the mesh nodes.
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11 Application to a model PDE: 2.Local discrete problems

1. We start by writing the bilinear form and the RHS functional as sums over the elements:

a(u, v) = >fdkN =e 1 ak (u, v) f(v) = E1.:L1fk(v)

2. We consider a GMLS with P = P m and kernel w(Kk, xj) := Pabk where

• bk is the centroid of element iCk .

• p(.) is a radially symmetric, positive kernel function with supp p = (h) .

3. We construct approximations of ak and fk locally from point values:

Sk = . . . , unk k local approximation space = local DoF set

SAN D2019-XXXX C

Local sampling set

Sk = {6x 3

ak(uk vic) := b(vk) • ak(13 I)) • b(uk); fk(vk):= b(vk) • fk(13); uk vk E S k

w (kk x3 >



12 Application to a model PDE: 3. Local and global assembly

Local stiffness matrix and load vector: p = frii,•••,730. Local GMLS basis - spans Pm

(Ak)ij = ak(13j,Pi) ak(PpPi) = EVPi • Vpi + (b • vpj)pi dx
3Ck

(fk)i - fk(Pi) fk(Pi) = f • pi dx
ICk

SAN D2019-XXXX C

• Requires only integration of polynomials!

• Can be performed by any standard rule.

Global problem discrete problem:

[S] = UkkeQhSk global approximation space = union of all local DoF sets

a([u], [v]) :=
Seek [u] E[S] such that eiGu], [v]) = f([v]) v [v] E [S]

ak (uk, vk)
kkEQh

:= fk(vk)
kker2



13 The global problem is a non-conforming discretization!

One can show that the global discrete problem is equivalent
to a non-conforming discretization in terms of discontinuous
piecewise polynomial shape functions.

The nature of non-conformity is similar to that in, e.g.,
Interior Penalty and Discontinuous Galerkin (DG) methods.

Thus, we can use standard techniques from IP and DG to
stabilize our formulation by adding suitable penalized
jump terms.

Here we shall use the same treatment of advective and
diffusive terms as in the "original" DG method; see

Cockburn, B., Dong, B., Guzman, J.: Optimal convergence of the original
DG method for the transport-reaction equation on special meshes.
SIAM J. Numer. Anal. 46(3), 1250-1265 (2008)
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14 A stabilized global formulation using a classical DG approach

Stabilization of the advective term

clk(u, v) , E I. Vu • Vvdx — f ub • Vvdx + f fivb • nkdS
Icker2h ick K k Okk

Stabilization of the diffusive term

air (u, v) = dk(tt, v) — Lfillvu•„vildS + f v• 17.1,11dS — (1 f [MI • IvEFdS
T T h 1-

Global stabilized discrete problem

Seek [u] E [S] such that CiDG au], [v]) = f ([v]) V [v] E [S]

SAN D2019-XXXX C

Ran = - (qi. + q2)

f{(P}} = 
1

((i91 + v2)

[M] = al • n1 + qz • nz

[[(P]] = 491n1 + 402712

Average a Jump

Es

+

1
1

Bochev, Kuberry, Trask, Perego. Mesh-hardened finite element analysis through a GMLS approximation of variational problems. Springer LNCS, 2020. I



15 Numerical examples
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16 Application #2: meshfree mimetic divergence

What is the problem: Something is missing in the meshfree universe!

Today, most meshfree methods for Dau(x) = f(x) look like this:

uÈ'(x)= E u(x,"(x_x„) * Dau,h(x)=Eu(xp)DaW,.(x— xp) 0 Eu(xp)D"WE(x— xp)= f(x)
P

Local kernel estimate of the field Derivative approximation

Creates conflicts between consistency and conservation

• SPH is conservative but not PO concistent. RKPM is P1 consistent but not conservative

Mathematically equivalent to node-based (or collocated) methods

• Unsuitable for mixed discretizations needed in Drift-Diffusion, subsurface flow,...

Many such methods perform poorly on the 5-strip problem, which tests their

ability to reproduce fields that are in H(div) but not in H1 - a critical requirement

for mixed discretizations

PDE discretization

—> "Compatible" or "mimetic" meshless methods lag behind their mesh-based cousins!

particle of
interest

neighbour
particle

1
kernel wo •

Exact
- N = 16
- N = 32
— N = 64

( 2 0.81

1
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17 What can we do about this problem?

We will build a Meshfree Mimetic Divergence operator (MMD)! How?

By mimicking the construction of a mimetic mesh-based divergence operator DIV : F C :

Divergence theorem

V • u dV = 1 udA
a c

Discrete Stokes theorem on cochains Mimetic divergence operator

lc V •u dV = udA DIV (T)Ic = 
1

PC
f Eac f fEac t

The mimetic divergence DIV is constructed from the following data:

• Field data: given by the face f(uxes Tf

• Topological data: given by the action of the boundary operator 0 on cells.

• Metric data: given by the measures pc = ICI and [if = lf 1, of a cell and its faces, respectively 1



18 An abstract Meshfree Mimetic Divergence (MMD) operator

A standard meshfree environment:

• A point cloud X c f2 comprising points [xi}iv_1.

• Field representations by point samples at xi: u tith E =

SAN D2019-XXXX C
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An MMD habitat:

Notions of virtual ce(ls C = {ci), indexed by xi E X and virtual faces F = (fi},

A notion of virtual boundary operator a': C F

• A set of real numbers {pc} and a set of real vectors {1f), indexed by virtual cells and faces, and

• An operator T: X —) F mapping point samples {ie} to real vectors {uf} indexed by virtual faces.

This MMD habitat provides abstractions of the data needed to construct the mimetic DIV

U
h E RN

Uf E RM

E RM

E R

• Field data: given by the real vectors {114: field moments

• Topological data: given by the action of the virtual operator a'on virtual cells.

• Metric data: given by the real numbers {uc} and the real vectors titfl: metric moments



19 Assumptions on the MMD habitat
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Virtual boundary operator

T.0 d':C F satisfies d'(UCEC c) = an, i.e., .0' recovers the physical domain boundary

Metric and field moments

T.1 itc > 0, = 0(hc1) and Ec =

T.2 µf =

T.3 117 =

anti-symmetry

symmetry of T
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{uc}, {Pi I
Metric moments

uf = T(uh)

Field moments

Local Lipschitz continuity: For any C2 vector fields u and v with point samples {uh) and {vh}

uf /if /if < Cha -11 ith vh IL

The numbers {uc}, {ttf} and the operator T are a P1 -reproducing pair:

v•p(xc)=— 
tec 

Pf • tef
Ea C

E P1; V.7cc E X

a' is the virtual
boundary!

Pf = T(ph)



20 MMD definition and analysis

Define the abstract meshfree mimetic divergence (MMD) operator DIV: X —> C as

1 VI

DIVIth 

IUC

= 2.1 uf •

fEa'c

Theorem.

SAND2019-XXXX C

• Uh is a point sample of a vector field U
h E RN

• uf = T(uh) are the field moments, Uf E RM

•{Pc},

•

{ILA are the metric moments,

d' is the virtual boundary!

/if E RM

E R

Assume that the metric and field moments satisfy T.1-T.3, the local Lipschitz condition and the P1
reproduction property. Then, the abstract MMD operator is

• Locally conservative: ItCDIVuh = uf • "if for any co = UjEI Ci; I g X

• First-order accurate:

CEco fEa co

• it — DIV 1 h Ch for any u c C2(fl)d

We will consider two instances of the abstract MMD operator:

• #1 - with background mesh • #2 - without background mesh



21 MMD Instance #1: with a background mesh

An MMD habitat with a background primal-dual mesh having dual cells C and dual faces F:

• Virtual cells C = {ci} —> dual mesh cells;

• Virtual faces F = ffi) —> dual mesh faces,

• Virtual boundary d' —> geometric boundary 0: C —> F

SAN D2019-XXXX C

fc V • udV

fEac

udA

GMLS
• Metric moments {uc} —> 1cl dual cell volumes

• Metric moments {ut.} Tf(p) GMLS basis moments Tf(U)— • b f (1.0) • Tf (P)

• Field Moments fut.) bf (uh) GMLS coefficients approximation target

Abstract MMD
1

DIVuh:= 
Ilc 

uf • /If

fEaic
 ► DIV111.11:= —1c11 bf(1211) • TAP)

fEac
MMD Instance #1

• MMD #1 satisfies a discrete divergence theorem • Useful for poor quality meshes with near singular basis functions.



22 MMD Instance #2: without a background mesh

Without a background mesh some of the data necessary to instantiate the abstract MMD is missing:

✓ Field data:

X Topological data:

X Metric data:

uf = bAuh) GMLS coefficients

dci=ff,,} geometric boundary

itc = Icl and tef = TAP) = ff pdA

1

DIVUh : = • allf

fea'c

• The missing pieces of data are exactly the ones that could be trivially obtained on the mesh!

• We will construct analogues of the missing data that are actually cheaper than building a mesh!

Our plan for the second MMD instance:

✓ Field data:

J Topological data:

.1 Metric data:

uf = bf(uh) keep the GMLS coefficients

use the E-ball graph of the point cloud as a mesh surrogate

define by solving a suitable algebraic problem

Ax b

SAN D2019-XXXX C
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23 MMD Instance #2: Topological Data

We endow X with a virtual primal-dual mesh complex (a mesh surrogate) as follows:

Virtual primal mesh: G „ (V, E) the E-ball graph of the point cloud

Vertices: V=X (the points in the cloud)

Edges: E {eii = (xi, xj) EVx — ocjl < Eg}

Virtual dual mesh: GE.9  , F) the "formal" dual of G „ (V, E)

Cells: assign a virtual cell c, to every vertex x,

Faces: assign a virtual face f,jto every edge eu

Virtual boundary: d'ci={fij}

G „ (V, E) can be constructed with 0(N) complexity using binning algorithms.



24 MMD Instance #2:

Constructing the metric data on a point cloud X with N points:

Virtual cell volumes: assume quasi-uniform point cloud

Inl
Pc:= 7

qxs--2 < 11.X0 CquqXc2

hx„ = sup min l x — xi l
œci2 xiEXn

1
qxo = — min — xi2 ioi

Virtual face areas: seek in terms of a scalar potential

pk kth basis function of P

Ok scalar function on X

GRAD: V E topological gradient

= (GRAD (Pk) pk

Metric Data

<— fill

<— separation

SAN D2019-XXXX C
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25 MMD Instance #2: Metric Data

Equations for the virtual face areas

Recall the P-reproducibility condition on the virtual metric data:

V • p(.x.c) = 
1 
— 1 bT(p)ttf Vp E P1; Vxc E X
Pcfea'c

Inserting the virtual face area ansatz µII = (GRAD Ok) pk yields

DIv(GRAD (Pk) pk ("Cc) = V • Pk (Xc)
,.. 

• A weighted graph Laplacian problem for each basis function. Solution cost 0(N) using AMG

• Trades a challenging computational geometry problem (meshing) for a benign algebraic one.



26 The two instances of the abstract MMD operator at a glance

#1: MMD with a background mesh:

SAND2019-XXXX C

#2: MMD without a background mesh:

1 DIVith:= 
1 

b(u) •DIVuh.• = ~GI b(u) • 'TAP) itf(P)feac
auc feac

• Defined by the GMLS coefficients: Field moments (the map T) • Defined by the GMLS coefficients:

T: uh —> b(u) T : uh —> b(u)

• Defined by the GMLS target: Face moments • Defined by a graph Lapacian:

: = T f (p); T f (p) = f f p dA ifC = (GRAD ok) pk ok= pk

• Defined by actual cell volumes:

Pc:= Icl

Cell moments • Defined algebraically:

11c: =



27 Application of the abstract MMD theory

Assumptions checklist

Property MMD with mesh MMD without mesh

T.1 c> 0, = 0069; Eclic =

T.2 µf = µ7

T.3 
uf 

+u-

Local Lipschitz

P1 reproduction

✓

,/

✓

✓

✓

✓

0
-0
o

o
un.

n✓

✓

TBD

TBD

rto

MMD with a background mesh:

• Locally conservative

• Provably first-order accurate

MMD without a background mesh:

• Locally conservative

• Numerically first-order accurate

SAN D2019-XXXX C



28 A historical perspective

The idea to construct virtual metric data had been used before in:

The Uncertain Grid Method (UGM)

• First example of a meshfree "finite volume" scheme

• Uncertain refers to faces between two adjacent points (our virtual face)

• First-order accurate

The Conservative Meshfree Scheme (CMS)

• Similar in principle to UGM

• First-order accurate

The key differences with our approach:

SAN D2019-XXXX C

O. Diyankov. Uncertain grid method for numerical solution of PDEs.
Technical report, NeurOK Software, 2008.

E. Kwan-yu Chiu, Q. Wang, R. Hu, and A. Jameson. A conservative
mesh-free scheme and generalized framework for conservation

laws. SISC, 34(6) 2012.

• GMLS enables extension of our scheme to high-order accuracy (in progress)

• Both UGM and CMS involve expensive global constrained optimization problems:

• UGM ND- LP solved by primal-dual log-barrier method (involves Newton)

• CMS QP which requires a specialized QP solver



29 Numerical examples

The five spot problem : Tests conservation

Sink -1/4

Source +1/4

Solid: Globally conservative meshfree
Dashed: Reference mixed FE method (RTO-PO)

— R=2
— R=4
— R= 8
— R= 16

Pressure with varying R =111/112.
0

Profile along line y = x

The five strip problem (Hughes et al): Tests H(div) compliance

A a
T.J.R Hughes et al, CMAME

20

15 —

~10-

— Exact
- - dx = 1/16

dx = 1/32
dx — 1/64

— dx = 1/128

01 1 1 12 0.4 0.6 0 
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. ... tr.
.........

Pressure field fOr large ratio
1000, illustrates stability of

method. -

15 —

~10-

— Exact
dx = 1/16
dx = 1/32
dx = 1/64

— dx = 1/128

1 12 0.4 010 6 0.8
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30 Fun numerical examples

Advection-diffusion

Finding your way out of a maze

1



31 The Compadre Toolkit
Coupling Approaches

for Next Generation
Architectures (CANGA)

iit 11- REW_OF0i DEVE_CRENT
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A modern, performant software library for meshfree and particle methods on different architectures.

• Everything you need to do particle/meshfree methods

• Developers: P. Kubbery, N. Trask, P. Bosler

• Initial development funded by Sandia's LDRD program

• Continuing support by the CANGA SciDAC project

Manages

• Input deck parsing

• Parallel file reading/writing (ASCII CSV, VTK, and Netcdf)

• Neighborhood searches (k-d tree)
• Euclidean & Spherical coordinate systems

• Registering fields of various dimensions
• Sets of particles

• Data transfer between sets (remap)
• Partitioning/repartitioning particle sets over multiple processors (Zoltan2)

Leverages Trilinos Tools

• Trilinos/Zoltan2 particles over processor partitioning
• Trilinos solvers (Amesos2, Ifpack2, MueLu, Belos, Teko, Thyra,

Stratimikos) for stationary problems (time-dependent pending)
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32 Conclusions

Good news!

• We extended GMLS to approximation of bilinear forms

• This approximation is equivalent to a non-conforming FE

• Quality of these shape functions does not depend on the mesh quality

• Their integration can be performed by standard FE quadrature

• Standard DG and IP techniques can be used to stabilize the formulation

• Preliminary results demonstrate optimal accuracy

More good news!

• A computationally efficient mimetic meshfree divergence exists!
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