.. ([ ]
@e:-2® CENTER ror
®-

e " COMPUTING
®'e

® o. RESEARCH

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

The amazing powers of Generalized Moving Least

Squares

Humboldt University, Berlin. September 16-18,2009

PRESENTED BY

Pavel Bochev

B e

4th International workshop on Minimum Residual Numerical Methods

SAND2019-9681C

SAND2019-XXXX C

P.Bochev, P. Kuberry, M. Perego, N. Trask

&
RLC

ABORAITIRY DIRECTED RESEARCH & DEVELCPMENT

U.S. DEPARTMENT OF

Office of

g ‘ ENERGY Science

ASCR

- @ENERGY ANOISA
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.



SAND2019-XXXX C I

2 I Outline :
|
« What is GMLS?
 Applications: I
* #1: mesh-“hardened” DG scheme |
« #2: meshfree mimetic divergence
« Conclusions ‘



3 I A GMLS tutorial

Generalized Moving Least Squares (GMLS) is a non-parametric regression for dual spaces

Statement of the GMLS problem: Given

v,V - a function space and its dual

P =span{p,}?, CV - afinite dimensional “consistency” space (usually polynomials)

A={A,...,.1}C V" - afinite set of sampling functionals:

w:V'xV =R - a correlation measure between functionals

For every Tt €V~ (target) find an approximation T €V~ given by

- -
T(p)=t(p) VpEP - P-reproducibility
N
T(u)= ¥ a,(0)A,(u) suchthat {w(r,4)=0 = a(t)=0 - local support
- la()|, =C VrEV’ - uniform boundedness
K L 1

H. Wendland. Scattered data approximation, Vol. 17. Cambridge university press, 2004.
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4 | A GMLS tutorial

Theorem. The GMLS coefficients a,(7) €R solve a (local) Quadratic Program (QP):

N 2 N =l N = ' RQ L=|A.(p. RQxN
minlg—a" Gl it Eai(r)ﬂti(l?) =7(p) VpeEP Al =l @ISR =) S [4w)e ‘
2= w(t,A) Pt W(t)=diag [w(r,)tj )] eER™  u= [),l(u)] eR". sample vector
|

Algebraic form of the QP QP solution: GMLS “basis” functions

]
[ min%a(r)TW'] (t)a(r) suchthat La(t)=17(p) J [ a(t)=W(@)L’ (LW(T)LT )‘1 7(p) ]
GMLS approximation of the action of TEV on u€V: We can also group the terms as follows |

WL (LW@L') t(p)

[ T(uw)=u"

GMLS basis form: sum of field samples A.(u).

=u’a(r) ] [ f(u)=[uTW(r)LT(LW(r)LT)‘1

7(p)=b(7)" 7(p) ]

|
|
The coefficients b(r) solve an algebraic WLS problem: [b(r) = argmin%( LTc—u)T W(r)( LTc—u) = argrnin%” LTc—u‘ ;(’J ‘

ceR" c€R"
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5 I GMLS is not a polynomial regression!

Example: field approximation from point values

p;(x) A polynomial basis function

0
Not a polynomial! = [ pT(x)=Eb,.(x)pi(x) ]

b;(x) A coefficient depending on the spatial location

= = == : Fxact

“Frozen” GMLS

GMLS approximant

eee o0 ...3; 000 0 © 0000 000 0000 00 0 00 Figure credit: M. Perego
2

This is non-parametric regression of the data: approximant not known

in closed form but can be effectively computed at any given point.
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What is the problem? Finite Element Methods (FEM) work best on shape-regular meshes. But... |

6 I Application #I|:“mesh-hardened” DG

Sometimes we have no choice but compute on highly Generation of high-quality grids can take up to 75% of the
distorted meshes as in Lagrangian and ALE hydro codes: total time-to-solution (Dart System Analysis: SAND2005-4647)
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Tzanio Kolev (BLAST hydro code, LLNL), M. Shashkov (LANL) http://cubit.sandia.gov I
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7 I What can we do about this problem?

Problem:

FEM solution quality depends on shape function quality:

Quality of standard FEM shape functions is tied to mesh quality

-

Solution:

Divorce shape function quality from the mesh quality!
I. Babuska and A. Aziz. On the angle condition in the finite element
method. SIAM Journal on Numerical Analysis, 13(2):214-226, 1976

How can we do this?
Go Meshless!

* We will use the mesh only for integration which can be done accurately even on a bad mesh

+ We will extend Generalized Moving Least Squares (GMLS) to approximate bilinear forms
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g I A little bit of history 60

The GMLS “basis” functions a,(7) have been used v
as FE shape functions by Nayroles (1992), Belytschko / ">:

(1994), Atluri (1998), Mirzaei (2013) and others.

°
e ‘
|
However, a,(T) is non-polynomial and requires
expensive quadrature.

A (G)MLS shape function and its derivative for Gaussian and
J.S. Chen uses under-integration to avoid this regularized w(.,.) and a standard P17 shape function on triangles.
problem and obtain computationally efficient

methods for large deformation solid mechanics.

T. Most, C. Bucher, Structural engineering and mechanics, 21/3, pp.315-332

Chen, J.S., Hillman, M., Riter, M.: An arbitrary order variationally consistent integration for

However) under-integration intrOduceS Galerkin meshfree methods. Int. J. Num. Meth. Engrg. 95(5), 387- 418 (2013).
instabilities and requires development of

S §is S & Chen, J.S., Wu, CT,, Yoon, S., You, Y.: A stabilized conforming nodal integration for Galerkin
pr0blem'5peC]f1C Stab]l]zat]on teChn1queS. mesh-free methods. Int. J. Num. Meth. Engrg. 50(2), 435-466 (2001).



9

SAND2019-XXXX C I

Extension of GMLS to approximation of bilinear forms

An abstract setting: Consider a variational problem set in a Hilbert space V:

[ seek uw €V suchthat a(u,v)=f(w) forall veV ]

f(-) is a linear functional = can use GMLS to approximate it:

a(+,+) is not a linear functional so GMLS does not readily apply.

How can we extend GMLS? Here’s the key idea:

-

a(,):VxV ->R; f():V->R

|

f) = f) =bw)- f(p)

~

J

a(u,v) = d(u,v) == b(w) - a(p,p) - b(w).

~

J

» Holding the test function v € V fixed gives a linear functional a,(-) == a(:,v)

» Holding the trial function fixed gives another linear functional a, () = a(u,-)

[seek u € R such that b(v) -a(p,p) -b(w) = b(v) - f(p) forall u € R ] The (global) discrete problem
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10 I Application to a model PDEs: |. Setup :
1. Variational problem ‘
seek uw €V suchthat a(u,v)=f(w) forall vevV

representing a weak form of —cAu+b-Vu=f in2 and u=0 onI I

2. FE mesh 2" with elements {Kx }1o, that may be low-quality.

3. A quadrature rule on each element that is exact for linear fields.

4. Apoint cloud X7 C 2 comprising points {@:};27, .

* No relationship assumed between the mesh and point cloud.

» Of course, mesh nodes can be points in the cloud.

* We seek an approximate solution on the point cloud, not the mesh nodes.
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Application to a model PDE: 2.Local discrete problems

1. We start by writing the bilinear form and the RHS functional as sums over the elements:

N, Ne
a(u,v) = 3 x5 ak(u,v) f(w) = 2202 fr(v) Local sampling set

~/\

2. We consider a GMLS with P = P,, and kernel w (K, ;) := p(|bk — a:j where /

« b, is the centroid of element /Cy, .

. p() is a radially symmetric, positive kernel function with supp p = O(h).

3. We construct approximations of a;, and f; locally from point values:

S¥ ={uf,...,uk } local approximation space = local DoF set Sk = {0a; | w(Ky, @;) > 0}

| Al =) G B AGD=BN) 4@ s, | |
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12 I Application to a model PDE: 3. Local and global assembly

Local stiffness matrix and load vector: p = {p,, ---,pq}. Local GMLS basis - spans P, ‘

(A0 = ax(pjpi)  a(pjpi) = f eVp; - Vp; + (b - Vp;)p; dx
K  Requires only integration of polynomials! I

(Fo)i = fo(0) fo(p) = fp;dx » Can be performed by any standard rule.  §
k)i = Ji\Di k\Pi) = " bi

Kk

Global problem discrete problem: |

[S] = Uk, enanS¥  global approximation space = union of all local DoF sets

[ Seek [u] € [S] such that a([u],[v]) = f([v]) V [v] € [S] ]

A
>
m
<
>
&
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13 I The global problem is a non-conforming discretization!

| Y y I

One can show that the global discrete problem is equivalent - [— Nodal FEM

—— Classical MLS/RKPM

to a non-conforming discretization in terms of discontinuous 08~ | Proposed GMLS .
piecewise polynomial shape functions. 1

0.6~

The nature of non-conformity is similar to that in, e.g., 041
Interior Penalty and Discontinuous Galerkin (DG) methods. i

02

Thus, we can use standard techniques from IP and DG to
stabilize our formulation by adding suitable penalized o 02
jump terms. '

— Nodal FEM
—— Classical MLS/RKPM
08 Proposed GMLS

Here we shall use the same treatment of advective and
diffusive terms as in the “original” DG method; see

0.6

04

Cockburn, B., Dong, B., Guzman, J.: Optimal convergence of the original 021~
DG method for the transport-reaction equation on special meshes.
SIAM J. Numer. Anal. 46(3), 1250-1265 (2008) o g

1 f |

(0]
D
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14 | A stabilized global formulation using a classical DG approach

Stabilization of the advective term

ai(u,v) = Z Vu - Vodr — /

ub - Vudzx + / uwvb - npdS
]CkEQh K K

oKy

Stabilization of the diffusive term
5 . )
ap € (u,v) = dg(u,v) — Z/}_{{VU}} - [v]dS + /}_v- [u]dS — 7 /}_[[u]] - [v]) #dS {{Q}}=%(Q1+¢I2)
f
{{p}} = %(wl +¢3)

Global stabilized discrete problem [lal] = 41 n1+ g2 7,

[[(P]] = @1ny + @n;

[ Seek [u] € [S] such that aP¢%([u], [v]) = f([v]) V[v] € [S]] Average & Jump

Bochev, Kuberry, Trask, Perego. Mesh-hardened finite element analysis through a GMLS approximation of variational problems. Springer LNCS, 2020.
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Numerical examples

Convergence
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Shape function comparison
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16 | Application #2: meshfree mimetic divergence I

What is the problem: Something is missing in the meshfree universe!

Today, most meshfree methods for Du(x)= f(x) look like this:

w'(x) = Eu(xp W, (x=-x,) =) D!’ (x)= Eu(xp )DW, (x-x,) =) Eu(xp )DW,(x-x,) = f(x)

Local kernel estimate of the field Derivative approximation PDE discretization

kernel W{n

Creates conflicts between consistency and conservation

interest
\

* SPH is conservative but not PO concistent. RKPM is P1 consistent but not conservative

Mathematically equivalent to node-based (or collocated) methods e

particle

20 : ! : , : : |

» Unsuitable for mixed discretizations needed in Drift-Diffusion, subsurface flow,...

Many such methods perform poorly on the 5-strip problem, which tests their
ability to reproduce fields that are in H(div) but not in H' - a critical requirement b
for mixed discretizations

- “Compatible” or “mimetic” meshless methods lag behind their mesh-based cousins!
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17 I What can we do about this problem!?

We will build a Meshfree Mimetic Divergence operator (MMD)! How? ‘

By mimicking the construction of a mimetic mesh-based divergence operator DIV:F —C :

Divergence theorem Discrete Stokes theorem on cochains Mimetic divergence operator

fCV-udV=f wdA - f V-udV=ZJ wdA SN DIV(T)|C=%ZTfyf

ac ¢ feac”f ¢ feac y

The mimetic divergence DIV is constructed from the following data:

* Field data: given by the face fluxes F;

» Topological data: given by the action of the boundary operator d on cells.

* Metric data: given by the measures uc = [C| and uy = [f], of a cell and its faces, respectively
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18 I An abstract Meshfree Mimetic Divergence (MMD) operator

A standard meshfree environment:
« A point cloud X c 2 comprising points {x;},.

- Field representations by point samples at x;: u — {u”" € RV |u! = u(x;)}

An MMD habitat:

h N

« Notions of virtual cells C = {c;}, indexed by x; € X and virtual faces F = {f;}, u*€eR

* A notion of virtual boundary operator 3':C —» F "

« Aset of real numbers {u.} and a set of real vectors {uf}, indexed by virtual cells and faces, and iy
pc €ER

« An operator T: X — F mapping point samples {u"} to real vectors {uf} indexed by virtual faces.

This MMD habitat provides abstractions of the data needed to construct the mimetic DIV

= Field data: given by the real vectors {u;}: field moments
= Topological data: given by the action of the virtual operator d'on virtual cells.

» Metric data: given by the real numbers {u.} and the real vectors {uf}: metric moments




19 I Assumptions on the MMD habitat

Virtual boundary operator

T.0 0':C - F satisfies 0'(U.¢c c) = 09, i.e., 3’ recovers the physical domain boundary

Metric and field moments
T1 p.>0, p.=0(h*) and ¥ p. =19

“Topological” assumptions

T.2 Ky = —Hg anti-symmetry
T.3 u; = +ug symmetry of T

ws -y — vy - pg| < ChOH[uh — |

The numbers {u_}, {uf} and the operator T are a P, -reproducing pair:

1
V'P(xc)ZPTZPf'Hf VpEP; Vx.€X

cfeac

“Metric” assumptions

{uc, {ns}

Metric moments

d’ is the virtual

boundary!

SAND2019-XXXX C I

rh)

|

u; = T(uh)
Field moments

Local Lipschitz continuity: For any C? vector fields u and v with point samples {u"} and {v"}



MMD definition and analysis

Define the abstract meshfree mimetic divergence (MMD) operator DIV:X — C as

u” is a point sample of a vector field
DIVuy,: = L z ur - p; uy = T(u") are the field moments,
< {n.}, {n;} are the metric moments,

d' is the virtual boundary!
Theorem.

SAND2019-XXXX C I

u € RV
ur € R
us € RM
Pc €ER

Assume that the metric and field moments satisfy T.1-T.3, the local Lipschitz condition and the P1
reproduction property. Then, the abstract MMD operator is

Z Ur - Ky
fed'w

IV -u—DIVuy,|| < Ch

 Locally conservative: Z K DIVuy, = for any w = U;¢; ¢;3

First-order accurate:

for any u € C2(Q)¢

We will consider two instances of the abstract MMD operator:

#1 - with background mesh #2 - without background mesh
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21 I MMD Instance #I: with a background mesh

An MMD habitat with a background primal-dual mesh having dual cells C and dual faces F:
* Virtual cells C = {¢c;} — dual mesh cells; ‘
« Virtual faces F = {f;} — dual mesh faces, f V-udV = z j udA I
» Virtual boundary ' — geometric boundary 0:C - F ¢ jeac™t

GMLS '

» Metric moments {u.} — |c| dual cell volumes

* Metric moments {u;} — t:(p) GMLS basis moments
* Field Moments {u;} — b (u") GMLS coefficients

A

by(u") 1 (p) ~ 7,(w)

approximation target
DIV = n = L n !
— Abstract MMD Up:="" L DIV u™: = z bs(u™) - 7¢(P) | MMD Instance #1
cfea’c |C| fedc I

*  MMD #1 satisfies a discrete divergence theorem » Useful for poor quality meshes with near singular basis functions.
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MMD Instance #2: without a background mesh

Without a background mesh some of the data necessary to instantiate the abstract MMD is missing:

v Field data:
X Topological data:

X Metric data:

= The missing pieces of data are exactly the ones that could be trivially obtained on the mesh!

= We will construct analogues of the missing data that are actually cheaper than building a mesh!

u; = be(u") GMLS coefficients

ac; =1{f;} geometric boundary

e =lcl and pr =7:(p) = [, pdA

Our plan for the second MMD instance:

v" Field data:

v Topological data:
v Metric data:

u; = bs(u") keep the GMLS coefficients

1
DIVuy: = — Z
€ reb'e

Ur - Uy

use the &-ball graph of the point cloud as a mesh surrogate

Ax =0>b

define by solving a suitable algebraic problem

SAND2019-XXXX C
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23 I MMD Instance #2: Topological Data

We endow X with a virtual primal-dual mesh complex (a mesh surrogate) as follows: ‘

Virtual primal mesh: G. (V,E) the e-ball graph of the point cloud

Vertices: V=X (the points in the cloud)

Edges: FE = {eij =] ((EZ‘,CL'j) eVxV | |332 — azj] < €g}

Virtual dual mesh: G (C,F) the "formal” dual of G., (V,E)

Cells: assign a virtual cell ¢; to every vertex x;

Faces: assign a virtual face f}; to every edge ¢;

Virtual boundary: d'c;={f}}

G.,(V,E) can be constructed with O(N) complexity using binning algorithms.



24 | MMD Instance #2: Metric Data

Constructing the metric data on a point cloud X with N points:

Virtual cell volumes: assume quasi-uniform point cloud

xq < hxg.0 < Ccqulxg

._M hxo.0 = sup min |z — x| — fill
He:= P eq®i€Xa !
N
dx, = - min|z; — ] — separation
2 i#j

Virtual face areas: seek in terms of a scalar potential

p* kth basis function of P

1f = (GRAD ¢*) p* ¢* scalar function on X

GRAD:V — E topological gradient

SAND2019-XXXX C I
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25 I MMD Instance #2: Metric Data

Equations for the virtual face areas ‘

Recall the P-reproducibility condition on the virtual metric data:

1
7-pG)=— > B VpEP; Vx €X
cfea’c |

Inserting the virtual face area ansatz pf = (GRAD ¢*) p* yields

DIV(GRAD ¢*) p*(x.) =V - p*(x,) |

» A weighted graph Laplacian problem for each basis function. Solution cost O(N) using AMG

» Trades a challenging computational geometry problem (meshing) for a benign algebraic one.
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26 | The two instances of the abstract MMD operator at a glance

#1: MMD with a background mesh: #2: MMD without a background mesh:
1 1
DIVuy:= — Z b(u) - 7¢(p) DIVup: = 2 b(uw) - us(p)
|C] U |
feac feac |
» Defined by the GMLS coefficients: Field moments (the map T) + Defined by the GMLS coefficients: |
T: u" - b(u) T: u" > b(u)
» Defined by the GMLS target: Face moments » Defined by a graph Lapacian:
wi=T@); @) =, pda i = (GRAD 9*) p¥; A gF=7 - p*
|
. _ , I
» Defined by actual cell volumes: Cell moments » Defined algebraically:
12|
He = Icl U= —

N



27 | Application of the abstract MMD theory

Assumptions checklist

SAND2019-XXXX C I

Property MMD with mesh MMD without mesh

T1 pe>0, p.=0(h?); Eepe =10 v v g |
T.2 Ky = —Hg v v “§ |
T3 u; = +uy v v =

Local Lipschitz v TBD =

P1 reproduction v TBD 3

MMD with a background mesh:

* Locally conservative

* Provably first-order accurate

MMD without a background mesh:

Locally conservative

Numerically first-order accurate
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28 I A historical perspective

The idea to construct virtual metric data had been used before in:

The Uncertain Grid Method (UGM) O. Diyankov. Uncertain grid method for numerical solution of PDEs.
Technical report, NeurOK Software, 2008.

» First example of a meshfree “finite volume” scheme
» Uncertain refers to faces between two adjacent points (our virtual face)

+ First-order accurate |
The Conservative MeShfree SCheme (CMS) E. Kwan-yu Chiu, Q. Wang, R. Hu, and A. Jameson. A conservative
.. . .. mesh-free scheme and generalized framework for conservation
+ Similar in principle to UGM laws. SISC, 34(6) 2012.

» First-order accurate

The key differences with our approach:

* GMLS enables extension of our scheme to high-order accuracy (in progress)

» Both UGM and CMS involve expensive global constrained optimization problems:

= UGM w LP solved by primal-dual log-barrier method (involves Newton)
= CMS w» QP which requires a specialized QP solver
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29 I Numerical examples

The five spot problem : Tests conservation

¥ T Y T
L Solid:  Globally conservative meshfree
Dashed: Reference mixed FE method (RTO-PO)

LI
rRIER
wwwn

—00 &1
o

1 Pressure with varying R = i, /u,.

Source +1/4 - ‘ :
‘ Profile along line y = x

The five strip problem (Hughes et al): Tests H(div) compliance

T.J.R Hughes et al, CMAME
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30 I Fun numerical examples

Advection-diffusion

Finding your way out of a maze

U Maognitude
1

Pq
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@ for Next Generation )
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31 I The Compadre Toolkit

LABORATORY DIRECTED RESEARCH B DEVELOPMENT

A modern, performant software library for meshfree and particle methods on different architectures.

« Everything you need to do particle/meshfree methods ‘
« Developers: P. Kubbery, N. Trask, P. Bosler BtiyStcs (Assembly)
36 5 Boundary Conditi
+ Initial development funded by Sandia’s LDRD program ougojrr:e :;;zons d
« Continuing support by the CANGA SciDAC project S Time:stepping
Manages J Repartitioning

 Input deck parsing Coordinates gy [
« Parallel file reading/writing (ASCIl CSV, VTK, and Netcdf) HEls bothoods (Point Eval,
«  Neighborhood searches (k-d tree) Readcr it F‘Eldﬁ'gf;‘:ger =i
« Euclidean & Spherical coordinate systems Input Deck __Ji\
) EegiSt?ri”g ﬁflds of various dimensions Compadre Toolkit v. 1.0 DOI: 10.11578/dc.20190411.1
» Sets of particles

» Data transfer between sets (remap) Distribution

» Partitioning/repartitioning particle sets over multiple processors (Zoltan2)

s https:// .osti.gov/d d
Leverages Trilinos Tools e e

+ Trilinos/Zoltan2 particles over processor partitioning DOECODE %25, o vomaion
* Trilinos solvers (Amesos2, Ifpack2, Muelu, Belos, Teko, Thyra,
Stratimikos) for stationary problems (time-dependent pending) https://github.com/SNLComputation/compadre
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32 I Conclusions

Good news! |

» We extended GMLS to approximation of bilinear forms
» This approximation is equivalent to a non-conforming FE
» Quality of these shape functions does not depend on the mesh quality

» Their integration can be performed by standard FE quadrature

» Standard DG and IP techniques can be used to stabilize the formulation
* Preliminary results demonstrate optimal accuracy \

More good news!

» A computationally efficient mimetic meshfree divergence exists!



