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Photonics applications for hBN
Distinctive properties of hBN as a deep UV emitter
Advances toward manufacturable, large-area hBN
Comparison to other UV emitter candidates

- emission wavelength tunability

- p-type doping
Potential for hBN/AIGaN heterostructure optoelectronics

Summary
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Figures from Wikipedia

Hexagonal form most chemically stable

Atomically-thin hBN has highly Important role in integration with other 2D
desirable properties materials (van der Waals heterostructures)

» Large dielectric breakdown strength (~8 MV/cm) > Tunnel barrier (graphene/hBN/MoS,)

» High chemical stability, oxidation resistant » Encapsulant
> Atomically flat surface » Substrate/buffer layer (highest mobility
graphene)
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“~aw® Photonics Applications for hBN

Infrared Nanophotonics Single Photon Emitters Deep UV Optoelectronics

Defect mediated SPE: ultra- Ultra-wide bandgap

Natural hyperbolic material enables emitters and

with strong, non-linear wide bandgap enables deep :
optical properties UV (~4 eV) SPE?2 detectors in deep UV
_ . > Quantum information —-> covert communications,
- Hyperlensing for bio- : :
i }:rﬁ) failulreganal Isis applications including bio-agent sensing, water
ging. ysiS, quantum cryptography purification, sterilization

nano-scale IR photonics

2. Bourrellier et al., Nanolett. 2016 Sandia
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w=" < Potential for hBN as a DUV Emitter

ARTICLES « Small single crystals of hBN fabricated
Direct-bandgap properties and evidence for with Ba-B-N solvent under high
ultraviolet lasing of hexagonal boron nitride bressure and temperature (HPHT)
Single CryStaI nature materials | VOL 3|l JUNE 2004 e Made at National Institute of Materials
KENJI WATANABE*, TAKASHI TANIGUUHI ANU HISAU KANUA Science (NIMS, Tsukuba, Japan)
ey =>» High-purity standard, even today
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s _ Recent evidence: hBN has an /indirect
bandgap

Low temp CL of HPHT hBN Bandstructure of hBN

Schuster et al. PRB, 2018

Wavelength (nm) Pierret, 2014 10 N
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Normalized CL intensity

Further evidence of indirect bandgap by:
b * Angle-resolved photoemission
> R . . . , spectroscopy (Henck et al., PRB 2017)
G 105
S X0 Xpq K
t pigh M » Electron Energy-Loss Spectroscopy +
g8 XA Density Functional Theory
T 3 1
£ o 103 - (Schuster et al., PRB 2018)
S é ; Phonon :E"d'rteCt
102 ] . xciton N _
3 Replicas X Transition to direct bandgap at 1 monolayer
S 0ol .!. M reported, analogue to TMDs like MoS,
5.70 5.75 5.80 5.85 5.90 5.95 6.00 (Elias et al., Nature Comm., 2019)
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v .« Measurement of hBN Luminescence

Low Temperature CL
Schue et al., PRL 2019
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« hBN has luminescence yield similar
to direct bandgap ZnO (~ 50%)

« Highly unusual combination of
indirect bandgap material with high
luminescence efficiency!

UV emission dominated by excitons
well above room temperature

Exciton
Binding
energy (meV)
hBN ~ 300%*
Diamond 80
Zn0O 60
GaN 25
GaAs 4

*Schue et al., PRL 2019, Sandia
other reported values '11 National
~130-700 meV Laboratories
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NIMS & Commercial

Sources of hBN

Wavelength (nm)
216 214 212 210

S4 S3

Normalized CL intensity (a.u.)

HQ Graphene

L~

57 58 59
Photon energy (eV)

Schue, Cond Mat Matl Sci, 2016

“ .. Towards large-area, manufacturable hBN

High-Temperature MOCVD System (up to ~1900°C)

Epitaxial
growth

sapphire

Reactor design:
Prof. Zlatko Sitar, NCSU

e Sapphire or SiC substrates
(2” diam)

e Triethylboron (TEB) and NH,
precursors

e N, diluent and carrier gas

e SiH, for Si doping

Outstanding Questions for Epitaxy:

> Free-exciton-related emission at
room-temperature?

> ML to few-ML thickness control?

» Large-area hBN with high quality
surfaces for 2D heterostructures?

Sandia
Earlier MOCVD work, 8 | Natonal
H. Jiang, TTU oratories



& Impact of Growth Temperature on hBN
Photoluminescence

PL Intensity (arb. units)

PL Intensity (arb. units)
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1500C

HTA 100, 99, 98, 97

First observation of
room temperature
free (5.75 eV) exciton
in MOCVD hBN
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= MOCVD: Potential for Self-limiting Growth

PL Intensity (arb. units)

-
N
|

-
o
1

(o]
|

PL Measurements
I W I L I L I

6 hour

| T=300K

3 hour

HTA091
—— HTA092
T

5.2 5.4 5.6 5.8 6.0

Energy (eV)

at high T,

Results from Raman Measurements

Growth Raman STEM
Time (hrs) peak ratio calibration

(MLs)
1600 0.25 0.1 ~1
1600 3 0.09 ~]1
1600 3 0.18 ~2
1600 6 0.16 ~2
1600 24 0.26 ~3

AFM Measurements

10.0 nm

0.

* Relatively little change in PL intensity over a
large range of growth times

 Raman ratio (hBN/Sapphire) suggests only a
few MLs even for 24 hours of growth

* Films roughen, largely due to increased
number of larger particulates with longer
growth times

0.33 hr 0.971 nm RMS

r 1
0.0 1: Height 5.0 pm

T 1
0o 1: Height 5.0pum
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.~ Growth parameter space for achieving

few-ML-thick films

NH ; Partial Pressure (Torr)

Growth Regimes . - S ! o
o
Low NH, . !
e Thick films 1800 N |
e Discolored films __ 1700 - l
O
¢ Intermediate NH, g 1600 . T
= |
g ; | - :
e Thick films 5 B 1
_ g 1400 °
e Clear films & o
F 1300 -
e High NH
9 * 1200 - i ©
e Self-limiting films o \H\ / ol L
1000 SRR “u"! — o T——
1 10 100 1000 10000
NH; Flow (sccm)
- NH; flow is the critical parameter, high Tg is not essential |
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e Competitive absorption of species that
react on a surface

e Controlling reactions:

B

B
gas + OPensurface < Bsurface

kn
Ngas + 0pensurface « Nsurface

k1ﬁ¥n

Bsurface + Nsurface — BNbulk + 20pensurface

e Growth rate:

Model captures
large decrease in
growth rate from

microns to
monolayers per
hour

G= ,
(1 + kppp + kypy)?

Normalized Growth Rate

krmkpkypppnl®

\ - Experimental
¢ — ——LH Model

o
o
-

0.001

1.0001

Deposition rate (nm/s)

\ 0.00001

1 10 100 1000 16000

1

e “Possible Model: Langmuir-Hinshelwood

] 1 )
Transport I Site
Limited : Limited
I T=1600"°C
I TEB=21.3
I ]
: pmol/min

10

NH3 Flow (sccm)

100
NH; Flow (sccm)

1000

10000

12

Sandia
ﬂ1 National

Laboratories




"gd'v.‘ Corlﬂatlon of Growth Conditions and
- Excitonic Properties

i i NH , Partial P T
3 regimes in room temp PL 3 Partial Pressure (Torr)
0.01 0.1 1 -

e No exciton emission 2000 + + ) 3

1300

e Defect bound exciton

1800
e Free exciton
1700

RT PL 1600

1500

1400 -

Temperature (°C)

1300 -

1200

1100

1000 — 11 |
1 10 100 1000 10000
NH; Flow (sccm)

*High NH; and high temperature '
needed for RT excitons 13 () Netona




o=@ Other recent advances in growth
of large-area hBN

« High-temperature Molecular Beam Epitaxy (Vuong et al., 2D Mat. 2017; Laleyan et al., Opt. Express, 2018)
=>» high-optical-quality monolayer and bulk hBN growth, single-crystal regions

« CVD on Single Crystal Cu substrates (wang et al., Nature, June, 2019)

= 10 x 10 cm? monolayer, single-crystal hBN

« Self-collimated Grain Formation on Liquid Gold by CVD (Lee et al., Science, 2018)

=>» 3 x 3 cm? monolayer, single-crystal hBN

A

@ Boronatom @ Nitrogen atom

* Au film on Tungsten
foil substrates

» Growth temperature
of ~1100°C

SC hBN film

* Grains form, self-
align and coalesce on
liquid Au template

o i 0 .
b U F Ky 14 (Ahy il
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= - Distinctive Properties of AlGaN Alloys

for UV Optoelectronics

- Amazing bandgap range! Uniaue Ontical Sources

- 3.4-6.2 eV, customizable with alloy T DeepUVLED ]
.. . electroluminescence
0.5 -
composition control, QW design _ Custom,
8 0B 1 Reconfigurable
Wide-bandgap nitride semiconductor alloys g i 1 Multi-A
(1]
6.5 =
b AN Deep UV-LEDs, Lasers | . = 02 -
' Solar blind detectors "
S5.5 '-E\ 0o =i
Q50 3 2ED 280 300 320 340 360 380 400
Q 45} AlGaN e Welength: fum) Liao (BU), APL 2011
O 40 Near UVivisible LEDs {%3 D :
S35 Solid State Liahti 3 Tailorable UV detectors
T 3.0 [— 04 9 100
E N N W
Wi 2.5 NN 052
20f N % All
10 3 “Blind” to
2% tension, 11% compression 2.0 % uisible light
i 5.0 2
3.0 3.1 3.2 3.3 3.4 3.5 3.6 §
In-plane Lattice Constant a (A)
10 . . -
250 300 350 400
Wavelength (nm) =) Sandia
National
Khan Nat Photonics, 2005 LhJ Laboratories




""“Potential for hBN-Alloys and tunable UV properties

Density Functional Theory (C. Spataru, SNL)

Substitutional Al in 3-hBN layers

Modeling shows high
activation enerqgy for
formation of B-rich

BAIN & BGaN alloys

AE=306 eV AE=~35 eV

Interstitial Al in 3-hBN layers

Spataru et al., Appl. Phys.
Lett., 114 011903 (2019)

Modeling of short-period hBN-AIN superlattices for digital alloys

5x5(hBN); - 4x4(AIN), : 1nm/1nm

» Y

hBN  hAIN  Sovi

» Hexagonal AIN for < 1 nm thick layers

» Predict insulating behavior & Type |l

« Optical gaps down to 5.2 eV (~238 nm) D intertacs chamnge

. WAIN  hAIN

* Mixed w- and h-AIN, disorder at interface
with hBN for = 2 nm-thick AIN

energy band alignment * Predict metallic behavior (w/o dopants) due

Modeling shows potential for tuning with ultra-thin-layer SLs

h Disordel_' @ interfgc

16

5x5(hBN); - 4x4(AIN), : 2nm/2nm

i\
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Mg Activation Energy vs. Al %

700

AlL.Ga, N

600-.
500:
400-.
300-.

200+

Acceptor activation energy (meV)

100

® Jiang et al. e Lt
e Taniyasu et al 7
A Suzuki et al ’/’
v Nakarmi et al. Pl
4 Lietal 3 22 u
» Tanaka et al. P =
/,,
P
/” i
s
/,’
w :
ok Liang and Towe, App.
(‘ w Phys Rev, 2018
£
¥
» Mg-doped Al,Gaq_«N
L]

Highlights of reported p-type Al,Ga, ,N

00 02 04 06 08 10
Al content (x)

1E+09 , . : ; : :
— 1E*084—g@mocvD ] r
5 1E+07 —p ] j Frd
E .. ; ®
5 1E+06 +| P-type dopingisa | !
<. 1E+051| major roadblock for
2 1e+04/| DUV AlGaN emitters | 4 ]
v : : {
2 1E+03 EeeepeipE s pa g iog .
g 1E+02 r * e : 1
z‘ 1E+01 T 7.7 T *. £ S T T TR
Y s ? ‘ z
1E+00 - ® i ? frrere)
1E-01 9 S | | ;
00 02 04 06 08 1.0

Al Composition

(a)
6

Energy (eV)
o

-2

hBN

Potential for p-type doping

Theoretical Predictions (DFT)
(a) C or Si on the Nitrogen Site

P —

h-BN wz-BN

427 eV
- Siy,

L “N &
SIN

093 eV

¢-BN

=C 3.06 eV 3

10 eV]
Siy

Deep
Acceptors for
all crystal

polytypes

(b) Be or Mg on the Boron Site

(a)
6

Energy (eV)
o

0

= Expect p-type
hBN not possible

S h-BN 2 wz-BN c-BN
.15 ev. 135 eV )
B 0.65 eV 3 _

. 0.65 ¢ 0.73 eV
I().31 eV 024 eV S
Beg Mgy "Be, Mg, |

Deep Acceptors
for hBN,
Be relatively
shallow for c-BN
and wz-BN

[§]

Weston et al., PRB 2017
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Experimental Reports of p-type hBN

Mg-doping Be-implantation B-vacancies
(MOCVD) & annealing (MBE)
AIN: hBN: hBN: hBN:
E, ~ 500 meV E, ~ 31 meV E,~ 210 meV E, not reported
[ J S ——
. (b) 28' * gant:arﬁt . 104[ (a) A HE e .!
26 10°F RTA 1
— 14+t - 2-24: 10’5[ / 1
$ - 7 ¥ y=A +B*X g 10'7[ 1
g 12 . 2'2: 5 %1353’2638 E 10°} RTA I
g . 2.8.——'——'—————02.53.03.54.0 3 11()9;0[ |mp,;;{té‘dm“_m‘ " Implanted 1
:03 - 103IT(K-1) 10'“ [ G Iy }
@ 10} - 1 12[As-grovx}h””~..u " As-grown }
& 10, | . . ,
. 10 8 6 4 2 0 2 4 6 8 10
8 I?Az 3_1 meY ‘ - . Voltage (V)
Temperature (K) . 50 keV Be implant « Growth conditions to
e ~1e15cm2 fluence promote B-vacancies
Cp,Mg: Mg ~ 1e19 cm-3 - 1000°C, 1 min RTA (N,) - low T, high N flux
g2 el b p ~3e19 cm?3 p ~ 7.5e19 cm?3
p~1e18 cm w~ 27 cm2/Vs w~ 16 cm2/Vs
u~ 0.5 cm?Vs
Dahal et al., APL, 2011 He et al., APL, 2009 Laleyan et al., Nanolett 2017 |
: Sandia
Different approaches: Not yet reproduced by other groups 18 ﬂ1 Netoral




"“ p-hBN /n-AlGaN Heterostructures

MOCVD (Mg: hBN, TTU)

p-hBN advantages over p-GaN/AlGaN:

p-hBN/n-Al|_Ga_ N heterostructure

» Potentially much lower resistivity

« DUV transparent (vs. absorbing p-GaN)
« Improved hole injection, e- blocking

» Improved light extraction (low n)

- 75mA@20V

Modeling: Dong et al., Physica E, 2015

* Rectifying but no I R T
EL reported V (volts)
Majety et al., APL, 2012

First DUV EL from hBN/AIGaN heterostructure LED (MBE, VB: hBN, U Mich)

. 3 T T T T T L 1 T T T
NI/ ~25F AINNh-BNLED _ 3§ ~25
= : e® i > i
S20F g i ©20
- 3 ® 1 T}
$15F .® i 215
10 f . i S10f
505 1 ® iE I
g- i AIN p-i-n LED : 2 0.5
O0OFe® p-m-®-m---"""""" k. !
o E 1 | 1 | i § 0-0 A A A A A A
Laleyan of al,, Nanolsft 2017 0 10 20 30 40 50 60 70 200 205 210 215 220 225 230
Current Density (A/cm®) Wavelength (nm)
Significant performance improvement over AIN Nanowire p-i-n 19 {fh Nofone
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Summary

Well beyond utility in 2D heterostructures, hBN is maturing as a
promising material for photonics applications spanning near IR to
deep UV

Rapid, recent advances have been made in understanding the unique
nature of this highly-luminescent but indirect-bandgap material

Decisive progress has been made toward more manufacturable, large-
area hBN through multiple approaches (MOVCD/CVD, MBE)

On-going studies are exploring exciton-phonon interactions, bandgap
tunability, p-type doping, nature of defects and origins of single-
photon emission, and many other topics of interest.

Initial demonstrations of p-hBN/ n-AlGaN devices suggest a promising,
hybrid approach for next-generation UV emitters
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SANDIA’s NATIONAL SECURITY PHOTONICS CENTER

Serve the nation as a center of excellence for national security photonics through
scientific excellence and innovations and leading-edge integrated photonics solutions

o >60 photonics staff (plus postdocs and students) with expertise in device design,
modeling, simulation, epitaxy, device fabrication, integration, assembly, and test

o Partnership with government agencies, industry, and universities
o Technology transfer to industry

s Areas of interests: communication, sensing, computing, imaging, quantum applications

4DVANCED
MATERIALS

50th ANNIVERSARY. .
_WINNER
L —un i
UAKE

- T-Q

_—
anece




g

-

L

=IO X
SANDIA’s MESA COMPLEX

Co-jointed Fab Facility
o Silicon Fab
> Compound Semiconductor Fab

Charter:
> design, develop, fabricate, qualify,
and produce at low-volume for ‘ licon

> conduct leading edge research \ > x)‘{:reém‘

Currently dozens of products: . © CEgEElE
» ASICs, llI-V SSICs, MEMS, FPAs,
RFICs, Optoelectronics

MPWV services available

Co-located R&D and Production
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SANDIA’s PHOTONIC MICROSYSTEMS

Naml(:apabihsforﬁdmmdm mmmmmaﬂdm
ides, Nitrides), Lithium Niobote, Graphene, etc.

Detection

Heterogeneous Integration

CMOS on J .
Si Photonics nBnon CMOS

1lI-Von CMOS

IR Focal Plane A
Optical Transceivers w/ ROIC
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I1l-V OPTOELECTRONICS CAPABILITIES

Custom, trusted, low-volume, high-reliability products for harsh environments when
industry is unwilling or unable to deliver

= - * Cryo-testing
8 * Reliabilit:

Custom Epitaxial Growth Device Design, Fabrication, Microsystem Heterogeneous
and Characterization Integration
! * Flip chip bonding
MOCVD: * Device design, modeling, simulation +  Wafer level oxide bonding
As, P, Sb, * TRL 1-6+: create, develqp,; prototype +  solder dam and bumps
Ga, In, Al, £ * Fabrication: 16,600 sq. ft Class .
Zn, Si, Te, = 10/100 Cleanroom .
N, H + Optical Comm .

Sandi
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- Motivation for Investment in UV

: @Germicidal
«¥  260-275 nm

(water, air, surfaces)

T X
iy

Solar-blind flame

detection, A<280 nm
(missile launch, flame)

Non-line of sight
communication, A<280 nm

UV-Induced Fluorescence
340, 280 nm

Optoelectronics

GaN

2% tension

jrTTTTT Wavelength (nm)

| Hg (254)

280

(biological, chemical agents)

3.0

UV Processing m

300-395 nm
(inks, epoxy)

3.1

3.2

In-plane Lattice
Constant (A)
I
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NeSIv
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Emerging
Technology

New

Technology

4“!}

Solid-state
lighting
(InGaN)

et

Mature

Technology
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