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3 I Neural Networks can approximate complex functions

Our hypothesis: Deep learning can be used to emulate physics as a data driven model.

Signal of nonlinear system extended with ML (1)

Pressure field prediction from ML

Pressure contour predicted by ML compared to simulated data (2)

(1) D. A. Najera-Flores and A. K. brink, "Efficient random vibration analysis ot nonlinear systems with
long short-term memory networks for uncertainty quantification," Proceedings of ISMA, Oct. 2018.

(2) P. D. Yeh and et al., "Physics-informed deep learning model for predicting ballistic
coefficients of explosively driven fragments," 1st Annual Meeting of the APS Division of Fluid
Dynamics , Nov. 2018.



4 The disruptive paradigm that is machine learning

Simple Single Neuron Example

Training N eural Networks:
o Establish a ground truth dataset.

o Optimize weights to minimize the loss function.

' Gradient descent is a common technique.

At the neuron:
Dot product of the weights with the inputs.

- Addition of bias term.

Activation of function introduces nonlinearity.

Optimization of Weight Functions



5 1 Neural networks are developed and used in three distinct stages
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Train: Using a subset AT of data from set A to
optimize an error function by adjusting neuron

weights.
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subset of data Av from set A to show the trained
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and unknown dataset B.

Training is the most costly part. Inference is cheap once the network is trained.
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Deep Learning for Fragment Characterization

Understanding explosive fragment flight



7 Case Study: Southwest Airlines Engine Explosion

Southwest flight 1380, April 17th, 2018

o Engine failure after takeoff from New York

LaGuardia

o Metal fragments from explosion punctured

fuselage

o 1 fatality, several injuries

How can we understand fragment flight to

prevent future safety incidents?
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Understanding range of fragment flight
8

Explosive fragments fly at supersonic
speeds

Current methods assume single drag
coefficient

Geometry is complicated, high aspect ratio

Fragment-air interaction leads to tumbling
and chaotic motion

Goal is to characterize range of a set of
flying fragments



I Previously developed fragment flight simulation procedure
9

1) Compute aerodynamic coefficients at all orientations with high fidelity
solver.

Fragment Aerodynamic Coefficients

2) Compute trajectories with rigid body integraton.e„
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An explosive may generate over 10,000 fragments. Simulating all of them is
prohibitively expensive!



How can we speed up aerodynamic calculation? Deep Learning!
10

Boundary Deep CFD
Lid driven cavity solution approximated Condition Learning Simulation
using Deep Learning (Stanford, 2017)

Used Generative Adversarial Networks
(GANs), adapted pix2pix algorithm

Achieved orders of magnitude speed-
up in inference time

Approximating aerodynamics using
deep learning shows potential
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Generative Adversarial Networks: a game theoretic
approach to machine learning

Generative Adversarial Networks (GANs) pit two competing neural networks against each other

The generator, tries to mimic real results

The discriminator, tries to identify mimicked results from real results

Condition
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Generative Adversarial Networks (GANs) learn to mimic complex
12 systems with wide applicability

Pix2pix model

. Condition is an image instead of a label

E.g. color segmentation of a scene

. GAN has to learn how to fill in segmentations convincingly

o Training goal is to fool the discriminator

Input Output

Wang, et al. "High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANS"



Our first attempt at using a GAN for flow prediction
13

Train pix2pix GAN using computed flow solutions as ground truth

. Simulated 1000 rectangles with random orientations & aspect ratios, Mach 5 external flow

o 900 training examples, 100 held out test examples

Pressure fields calculated with compressible Euler equation solver (CE Solver)

Ideal gas assumption for simplicity

pix2pix GAN

Input Data Intended Outcome



14 I Predicted pressure is close on leading edge, but drag is inaccurate

GAN successfully approximates
the pressure map along the leading
edge (left) of the object

Larger error behind the object due
to unsteady wake and fluctuating
lower pressure

Inaccurate drag calculation despite
close values in pressure

Pressure Abs. Difference
f

CE Solver ML

Pressure Percent Difference

4:

0

-20

-40



Solving conservation equations is expensive and complex...
15 ...but solutions are easy and cheap to check

Punishes model for violating physics constraints

More accurately represents shockwave

Improved accuracy around the edges of the object
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Exact solutions to differential equations are not required ML
can learn to approximate solutions



Adding physics loss term to loss function is a clear improvement
16

CE Solver GAN Loss
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Enforce momentum and
mass conservation in
generator

Punishes model for violating
physics constraints

Improved accuracy in
pressure field prediction
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Successful Deep Learning prediction of fragment aerodynamic forces in
17 2D

Total Loss = GAN Loss + weights * Physics Loss + weights * Force
Loss

Appropriate tuning of weights leads to successful predictive model

Mean Relative
Error vs CE Solver

Drag 1.87%

Lift 5.63%

Torque 2.29%

ML predictions approximate CE solver results within 6%



3D calculations are showing the same early promise as 2D
18

Qualitative results are visually
similar to simulation output

Captures complex fragment
geometries

—10,000x faster

Virtual wind tunnel

ML pressure prediction and fragment
surface showing pressure field in a

single plane

ML shows the same early promise with 3D
as 2D showed before physics loss was

added



19 1

Data-Driven Coupled Neural Networks

Allowing neural networks to communicate will allow for the combination of disparate datasets as well as the

emulation of coupled PDEs.



With a typical data-driven model, error accumulates too quickly when
20 solving step-by-step
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21 1 Error is significantly reduced by adding physics constraints to neural networks
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22 Physics informed neural networks significantly reduce error

Natural Frequency

Dense Layer

Dropout Layer

Dense Layer

Dropout Layer

Dense Layer

Latent Variables
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Training — Numerical (Python)
Inputs — Natural Frequency, Initial Conditions, Force
Outputs — Displacement, Velocity, Acceleration
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Black — Truth Data o rect — NN Prediction
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23 1

Deep Learning for Transient Fluid Flow

Novel deep learning training method



24 I Naive extension of deep learning model to transient systems resulted in
poor predictive performance

Lift force error with step-by-step fluid NN prediction
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Pressure Field error with step-by-step fluid NN prediction

110 Transient full field solution suffered similar error accumulation. 1



25 I Novel iterative delayed back propagation reduces error accumulation

Using predictions in the training set

Lift over 1000 steps

Ground
truth

Time

Prediction
GT Abs
Range

Novel algorithm improves lift force prediction

Predictions are used in conjunction with
ground truth during training
Back propagation is delayed for n iterations
Iteration number, n, is limited by error
accumulation

Training — CFD (Fuego)

Inputs — Prior step pressure and velocity field

Outputs — Current step pressure and velocity field



26 Physics informed neural networks can solve one-way coupled problems
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Future work: Physics informed neural networks are a feasible approach
27 to solving two-way coupled problems

Multi-component system under consideration
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Questions?


