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Neural Networks can approximate complex functions

Our hypothesis: Deep learning can be used to emulate physics as a data driven model.
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4 | The disruptive paradigm that is machine learning

Xj
Activation Function
‘ At the neuron:

y = tanh(wyx; + WX, + by) > Dot product of the weights with the inputs.

o Addition of bias term.

. _ ° Activation of function introduces nonlinearity.
X2 Weights Bias

Simple Single Neuron Example

I.oss Function

1 m
o Ly, y) = EE(” - 91)?
Training Neural Networks: i=1

° Establish a ground truth dataset.

> Optimize weights to minimize the loss function. Gradient Descent

: : . : : oL
> Gradient descent is a common technique. witl = Wl — I —

J J aW]

Optimization of Weight Functions



5 I Neural networks are developed and used in three distinct stages

Train Validate
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Deep Learning for Fragment Characterization

Understanding explosive fragment flight




7 I Case Study: Southwest Airlines Engine Explosion

Southwest flight 1380, April 17t, 2018

o Engine failure after takeoff from New York
LaGuardia

o Metal fragments from explosion punctured
fuselage

o 1 fatality, several injuries

How can we understand fragment flight to
prevent future safety incidents?

Trailing
edge

I I - : ,' - i | Convex side I
Origin area 0.200in . I

https://www.nytimes.com/2018/04/17/us/southwest-airlines-explosion.htmi
https://en.wikipedia.org/wiki/Southwest_Airlines_Flight 1380

Containment Shield
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Understanding range of fragment flight

Explosive fragments fly at supersonic

speeds

Current methods assume single drag
coefficient

Geometry is complicated, high aspect ratio

Fragment-air interaction leads to tumbling
and chaotic motion

Goal is to characterize range of a set of
flying fragments




Previously developed fragment flight simulatio

n procedure

1) Compute aerodynamic coefficients at all orientations with high fidelity

solver.

Fragment Aerodynamic Coefficients

2) Compute trajectories with rigid body integration.
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o How can we speed up aerodynamic calculation? Deep Learning!

Boundary Deep CFD

Lid driven cavity solution approximated Condition Learning  Simulation
using Deep Learning (Stanford, 2017) T =

—— e —— ——
.

Used Generative Adversarial Networks
(GAN:S), adapted pix2pix algorithm

A A s S
n

Achieved orders of magnitude speed-
up in inference time

Approximating aerodynamics using
deep learning shows potential

S p——
I

Farimani et al. 2017




., | Generative Adversarial Networks: a game theoretic
approach to machine learning

Generative Adversarial Networks (GANSs) pit two competing neural networks against each other

> The generator, tries to mimic real results

° The discriminator, tries to identify mimicked results from real results

Training set

Condition

3
j
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Generative Adversarial Networks (GANSs) learn to mimic complex
systems with wide applicability

Pix2pix model
> Condition is an image instead of a label

> E.g. color segmentation of a scene
> GAN has to learn how to fill in segmentations convincingly

° Training goal 1s to fool the discriminator

Input

Wang, et al. “High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANS”
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Our first attempt at using a GAN for flow prediction

Train pix2pix GAN using computed flow solutions as ground truth

° Simulated 1000 rectangles with random orientations & aspect ratios, Mach 5 external flow
° 900 training examples, 100 held out test examples
° Pressure fields calculated with compressible Euler equation solver (CE Solver)

o Ideal gas assumption for simplicity

pix2pix GAN

v

Input Data Intended Outcome




14

Predicted pressure is close on leading edge, but drag is inaccurate

CE Solver ML

GAN successfully approximates
the pressure map along the leading
edge (left) of the object

Larger error behind the object due
to unsteady wake and fluctuating
lower pressure

Inaccurate drag calculation despite
close values in pressure

Pressure Abs. Difference Pressure Percent Difference




Solving conservation equations is expensive and complex...

15

...but solutions are easy and cheap to check

Punishes model for violating physics constraints

More accurately represents shockwave

Improved accuracy around the edges of the object

A

E+u Vp+pV-u=0

au+ v +Vp—

5 u-Vu p =g
de p
—+4+u-Ve+—-V-u=0
kat P

Exact solutions to differential equations are not required - ML
can learn to approximate solutions



y Adding physics loss term to loss function is a clear improvement

GAN Loss +
CE Solver GAN Loss Physics Loss

4

Error

Enforce momentum and
mass conservation in
generator

Punishes model for violating
physics constraints

Improved accuracy in
pressure field prediction




Successful Deep Learning prediction of fragment aerodynamic forces in
2D

Total Loss = GAN Loss + weights * Physics Loss + weights * Force
Loss

Appropriate tuning of weights leads to successful predictive model

Mean Relative
Error vs CE Solver

Drag 1.87%

ML predictions approximate CE solver results within 6%




. 3D calculations are showing the same early promise as 2D

Qualitative results are visually
similar to simulation output

Captures complex fragment
geometries

~10,000x faster

ML pressure prediction and fragment
surface showing pressure field in a
single plane

_ = _ . 5 ! ML shows the same early promise with 3D
: : as 2D showed before physics loss was
added

Virtual wind tunnel
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Data-Driven Coupled Neural Networks

Allowing neural networks to communicate will allow for the combination of disparate datasets as well as the
emulation of coupled PDEs.



With a typical data-driven model, error accumulates too quickly when
solving step-by-step
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21 | Error is significantly reduced by adding physics constraints to neural networks

Natural Frequency X0, Vo, Qo

. Physics Check l Random Seed
Dense Layer |

Dropout Layer =
N vl] .
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Latent Variables

Mean . Log Variance

Random Sample
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Physics informed neural networks significantly reduce error

Natural Frequency X0, V0, G

Dense Layer Lt
Dropout Layer #=x+% % E‘ Dense Layer
sl

Dropout Layer
@ =F(t)-[*1 7] E

Dense Layer

Random Sample

Training — Numerical (Python)
Inputs — Natural Frequency, Initial Conditions, Force
Outputs — Displacement, Velocity, Acceleration

Normalized Units
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[ KEY TO MULTI-PHYSICS, MULTI-SCALE, MULTI-COMPONENT ANALYSIS.
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Deep Learning for Transient Fluid Flow

Novel deep learning training method




24 | Naive extension of deep learning model to transient systems resulted in
poor predictive performance
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Novel iterative delayed back propagation reduces error accumulation

n Input

Model
predicts

Model
(shared)

Pred1ct1on

Next Input

Model
predicts
Model
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Using predictions in the training set

Lift over 1000 steps
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Novel algorithm improves lift force prediction

* Predictions are used in conjunction with
ground truth during training

* Back propagation is delayed for 7 iterations

* Iteration number, #, is limited by error
accumulation

Training — CFD (Fuego)
Inputs — Prior step pressure and velocity field
Outputs — Current step pressure and velocity field

5



26 | Physics informed neural networks can solve one-way coupled problems
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27 I to solving two-way coupled problems
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Future work: Physics informed neural networks are a feasible approach
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Questions!




