
Simulation by Composition:
Using models as building blocks to enable

simulation of complex node architectures

PRESENTED BY

Gwen Voskuilen

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Ft Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-9588C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 Architecture innovations drive models

As scaling slows, architectures become more creative
Instead of just bigger
Increasingly complex
Heterogeneous processors, GPUs, other accelerators

Processing at memory and/or throughout cache hierarchy

Customization

Simulation.
The more "stuff" to simulate, the slower it gets
New models, not just scaling existing ones

Top: Google TPU
Middle: Apple Al2 SoC
Bottom: AMD

Architecture trends are leading to slower development of slower simulations
Even as architectures are evolving more rapidly!

3 Impact of Complexity in Node Models

Complex models are difficult to work with
Noisy, masks cause & effect

Difficult to debug

Slow

Often models are tightly integrated
Modifying the model becomes complex

E.g., pervasive assumptions about caching or address mapping

4 Approaches

Simpler simulators
Faster simulation

0 Less accurate

0 What can be simplified is problem dependent 4 makes reuse difficult

Accept the complexity
Slow simulation
Slower

More accurate*

Complex models are hard to validate

Or, build composable models

5 Composability is Key

"A highly composable system provides components that can be selected and
assembled in various combinations to satisfy specific user requirements"

-Wikipedia

Benefits
- Rapid creation of new architectures

0 Minimize the work to explore new concepts

Only add/modify the new parts

Minimal disturbance to existing infrastructure

Tune tradeoff between fidelity and simulation overhead
to specific instances

E.g., simplify the core model, keep the caches detailed

OR simplify the cache hierarchy and use detailed core models

6 Composability makes research better

Fair comparisons from point changes
Single change between base system and comparison point

E.g., swap prefetch model at runtime without disturbing any other part of the simulation

Validating models is time consuming but necessary
Breaks much of validation into manageable chunks

Create new systems in which many of the pieces have already been validated

Workflow benefits
Continuous path from high-level to detailed models

Build hierarchically

Collaborative development

7 Achieving composability

Defined APIs between classes of components
Cores and caches

Instruction stream and pipeline model

Must be flexible enough to adapt to future ideas

Hard part

Fast simulation
Leveraging composable model properties to facilitate parallel simulation

Capture, synchronize interactions between models

Enable seamless transition from fast low-detail models to slow high-detail ones

=I.

0 0
TRAFFIC GENERATOR

$$

CACHE

8 Composability versus interoperability

< AK

Stand-alone Interoperable Composable

Many simulators support interoperability
0 Bridge between simulators
0 Problems:
(Interface is often simulator-specific 4 rewritten for every integration

Inflexible because not written to be generic

Models can rely on information not encoded in their interface API

E.g., one simulator expects in-order requests, other breaks that, first one has problems!

9 The Challenges of Composability

Inefficiencies
Engineering overhead to design models to existing APIs and build APIs into models

Code/runtime overhead from designing models to APIs

Must be careful to build API such that it is flexible but doesn't impose too much burden

Have to work through APIs instead of around them

No shortcuts

Never completely sufficient
Interfaces unable to capture arbitrary future ideas

Always be a need to hack simulators

Composable Node Models in
SST

The Structural Simulation Toolkit
Goals

• Create a standard architectural simulation
framework for HPC

• Ability to evaluate future systems on DOE/DOD

workloads
• Use supercomputers to design supercomputers

Technical Appr.dch
• Parallel

• Parallel Discrete Event core with conservative
optimization over MPI/Threads

• lnteroperability
• Node: memory, cores, caches, NoCs
• System: routers, NICs, schedulers

• Multi-scale
• Detailed and simple models that interoperate

• Open

• Open Core, non-viral, modular

(

Status
.
.

.

Parallel framework (SST Core)
Integrated libraries of components (Elements)

Current Release (9.0)
https://sst-siriluldwi.org
https://gith u b/sstsim ulator

MK I% A : . .

5
Gem5

4.# VIADKGEJ e

Mell a nO
T oh %ea, Val.; 6.041:Um •

BOSTON
UNIVERSITY

NM

ro

%,i;4jsaiga
• A B114M

En bi.YiN ‘NPS

•

'IDIA.

Key Capabilities

Parallel
Built from the ground up to be scalable

Conservative, distance-based optimization

MPI +Threads

Flexible
Enables "mix and match" of simulation components

Custom architectures

Multiscale tradeoff between accuracy and simulation time

E.g., cycle-accurate network with trace-driven endpoints

Open API
Easily extensible with new models, modular framework and open source

13 SST Building Blocks

SST simulations are comprised of component! connected by links

Components communicate by sending events over the links
Components define port which are valid connection points for a link I

Components can use subComponents and modules to expose composable
functionality internally

Component
Core

Component
Core

(
(

Link

Link

Component
Cache

SubComponent
Prefetcher

Component
Cache

Link

Link

(

Component
NoC Router

c
•I

Component
NoC Router

1

1 4 SST Architecture

SST CorE Framework
The backbone of simulation, parallel, high-performance, multi-threaded

Provides utilities and interfaces for simulation components (models)

Clocks, event exchange, statistics and parameter management, parallelism support, etc.

SST Element libraries
Libraries of components that perform the actual simulation

Elements include processors, memory, network, etc.

Compatible with many existing simulators: DRAMSim2, HMCSim, Spike, Ramulator, etc.

.6_,
c
a)
c
o

E
o_ 1

o
u

SST Core

.6_,
c
a)
c
o
a
E
o
u

Breadth and Depth...

1111
Detailed Caches

Multiscale Memory Models

LDynamic Trace-based Processors
I Functional Processors

1
.111,

L High-level Program
Communication Models _.i.

pi Cycle-based Networks imir

High-level System Workflows

memHierarchy

cassini

CRAMSim

NVDIMMSim

O GoblinHMC

SimpleDRAM

ariel

O MacSim

GPGPUSim

Spike

O ember

O firefly

hermes

O merlin

O kingsley

scheduler

- Cache and memory

- Prefetchers

- DDR, HBM

- Emerging Memories

- HMC

- Low-fidelity DDR model

- PIN-based tracing

- GPGPU

- GPGPU

- RISC-V ISA

- State-machine message generation

- Communication protocols

- MPI-like interface

- Network router model and NIC

- Network-on-chip model

- Job-scheduler simulation models

16 Composable Node Modeling in SST: Building bigger models

Loreil

L1_0

Loreil
LLI

core2

mil

L1_29

corl

L 1 _3

• -. r bus Mr
1

bus = sst.Component("bus", "lib.bus")

for x in range(0,4):
core = sst.Component("core" + str(x), "lib.cpu")
11 = sst.Component("L12 + str(x), "lib.cache")
link = sst.Link("core_to_cache2 + str(x)
link.connect(core, 11)
linkb = sst.Linkrcache_to_bus_” + str(x)
linkb.connect(bus, 11)

12 0 = sst.Component("L2_0", "lib.cache")
12 1 = sst.Component("L2_1", "lib.cache")

Link0 = sst.Link("bus_to_12_0")
Link1 = sst.Link("bus_to_12_1")
Link0.connect(bus, 12_0)
Linkl.connect(bus, 12_1)

17 Composable Node Modeling in SST: Building deeper models

Replacement Policy

1-
Prefetcher Observer

._
Cache

Coherence
Port manager

p
Hash Function

1-
Custom

instruction
handler

SubComponent
Slot in a component for loading some function

Example: cache replacement policy

Subcomponents can live in any library; allows
users to customize without hacking the
component

Enables
Hierarchical models

Successive refinement

Customizable model outlines

Model re-use

18 SST: Future directions in node modeling

Increasing composability within existing node models
Accelerator interfaces in core models

Expanded support for drop-in addition of custom instructions

Support for composing RTL models with C++ models

Growing the eco-system

19 Revisiting the composability challenges

Component/SubComponent APIs designed to be lightweight
Minimize runtime overheads

While enabling SST Core to manage parallel execution between components

Benefit from forcing components to interact through APIs

Interfaces
Network
Memory (core F4 cache/memory)

20 Closing thoughts

Architectures are evolving quickly slower simulation

Building simulations out of composable pieces
Amortizes investment in simulation infrastructure

Speeds up innovation

Reduces the validation burden

O.0014
WTO
41.*****
ep*Ofr011.

****0

fie•••••
NV**0111
46aw•ia

Ti le

P
HMC

DDR

;

L3

Core

L3

Core —0

Mem L3

L3

Stacked
Vault

Logic
Laier

Directory
Controller

DDR

irectory
Controllei

Router

DDR

irectory
Controller

"Quad" "Quad "

L2

1 1

(r

L1 131
Core Core

L I

Core

L2

L1

Core Con

L1

((re

L1

Core

L3

Core

Ariel Trace Capture

PIN

■

22 Composability within a component

Pieces of functionality that are dynamically swappable for custom functionality

Example: Cache
Coherence protocol

Cache structure

Set associative vs direct mapped vs skew vs fully associative

Replacement policy

Hash functions

Prefetcher
Connection to other caches

Network-on-chip versus bus versus wires

So many simulators, so little interoperability

Already a rich selection of open-source simulators

But not a solid eco-system for modeling systems
Modifying simulators can be complicated

Tightly-entangled components (e.g., assumptions about caching or address mapping
pervasive)

Some simulator integrations, but ad-hoc and integration doesn't always last

Significant performance problems with tying many simulators together

Want an eco-system that:
Enables "mix-and-match" of existing models to create custom systems

Encourages disentangling models and exposing interfaces for swapping functionality

Bricks not buildings

Supports parallel simulation

Provides a continuous path from low-fidelity/fast modeling to high-fidelity/slow models

