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Why analog accelerators? )

Three orders magnitude energy savings w/ in-memory computing
* Vector Matrix Multiply (VMM)
* Matrix Vector Multiply (MVM)
* Quter Product Update (OPU)
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Realizing physical matrix kernels

 |deal Vector-Matrix Mulitply :
« Electrically realisable using
Kirchoff’'s + Ohm’s laws
 Programmable resistors - e.q.
ReRAM/MRAM devices- key component
« Small voltages to read (inference)
« Large voltages to program
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Mapping Neural Networks to Crossbars

Concept error from following layer
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Challenges for adaptive analog accelerators

= Emerging ReRAM : far from ideal,

=

Asymmetric Nonlinearity
T T T

floating-point ‘weights’

Positiw{e Pulses

Negative Pulses |

Gl
= Several key problems: §
= Limited resolution g
= Read and write noise g
= Device stochasticity 8 L
= Device non-linearity 0
= Device asymmetry
= Preliminary analysis: most severe impact 2
from asymmetric non-linearity g
= How can we get around this?? g 0]
= |ncrease bio-realism of learning accelerators -> < :
lower synapse, neuron requirements ok

= The brain does not use backprop (at least as we
currently apply it in ML).
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Major opportunity: i@

Building neural networks with spintronics components

= Spintronic components alleviate signature device issues of
ReRAM accelerators.

STT-MTJ/SOT-MTJ: intrinsically binary + stochastic -> non-linearity irrelevant.

Magnetic devices with analog behavior (Domain wall, skyrmionics) : different
physics, non-linearity immune

= Additional Advantages:

Extreme endurance (important for online learning + inference)
Low energy footprint : typically <1V programming, <50ns programming .
Extreme compactness and CMOS-compatible 1T1R array scaling (BEOL integration)
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Issues with existing spintronic NNs

Several existing spintronic NNs proposals over-
use CMOS

= Since CMOS will also be important at

synapses

system-level (control blocks, routing...), may
lose energy advantages.

STT/SOT can be current heavy devices. DW
synapses/neurons -> path to al rather fJ
elementary switching costs!!
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DW-MT)J Basic Device Structure ==

= Domain wall propagates through ferromagnet nanotrack/strip

= MTJ Output at center expresses:
= Logic 1/high output if DW has moved past Output
* Logic 0/ low output if DW has not moved past output.

= Pinned antiferromagnet terminal at end of track: for logic/clock

= Devices have been experimentally fabricated and co-integrated.




Integration and Leak Behavior s

= |ntegration:
= DW position integrates applied current and stores it (non-volatile)
= Leaking function:

= Critical for neuron ‘ reset’/’spike’ function and dynamics (volatile)

= Different methods for realizing leak: bottom fixed ferromagnet,
trapezoidal shape, anisotropy gradient
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="
Lateral Inhibition between DW-MTlJs

72
[ - e
g [ S g Neuron2 Current Density
bt 1.5%10" A/m?
70 %
_..r-'s. \'i
.@ \“
Ee68f .
z :
S 66T 7
- '
= 64 »
= .
: '~
S 62} [
n 1
~l Il11
g "
o L]
< 60 |
2 !
- 4
s8¢
"c---o--nxo---T
56 1 1 L i L
0 0.5 1 1.5 2 2.5 3

Neuronl Current Density n{lll]l2 Am""}

N. Hassan*, X. Hu*, L. Jiang-Wei, W. H. Brigner, O. G. Akinola, F. Garcia-Sanchez, M. Pasquale, C. H. Bennett,
J. A. C. Incorvia, J. S. Friedman, Journal of Applied Physics, 2018




Lateral Inhibition: Demonstration @

Firing point

N. Hassan*, X. Hu*, L. Jiang-Wei, W. H. Brigner, O. G. Akinola, F. Garcia-Sanchez, M. Pasquale, C. H.
Bennett, J. A. C. Incorvia, J. S. Friedman, Journal of Applied Physics, 2018




o

Application of LIF DW-MTlJs i

. Firing point
= Max-out operation was it

implemented in a

perceptron (1 layer NN)
= Weights were pre- Neuron 3 [l

written before testing Neuron 4 [l

Neuron 5 [

" 949% success rate
" |nference works!

= Very fast (<1us for entire
test set) Neuron 9 [l

= Very low energy Input digit pattern

N. Hassan*, X. Hu*, L. Jiang-Wei, W. H. Brigner, O. G. Akinola, F. Garcia-Sanchez, M. Pasquale, C. H.
Bennett, J. A. C. Incorvia, J. S. Friedman, Journal of Applied Physics, 2018
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Proposed DW-MTJ Spintronic NN | @&,

= Previous work showed written weights (e.g. inference only) performance.

= Not online learning!

= Current work- dual online learning used to recognize MINIST database:
= Afirst NN layer uses DW-MT)J devices for unsupervised clustering: k-WTA Algorithm

= Asecond NN layer uses DW-MT)J devices for max-out operation used in the supervised

learning process (same as previous).

=  Weight updates: Widrow-Hoff (same as ‘delta’ rule used in backprop).

Unsupervised Layer Supervised Layer

Synallpses

Input

Output Neurons
in WTA Layer

Lateral Inhibiti
Signal

Labels

(10 0..0)
(010..0)
(00 1..0)

(00O ..1)

AW, i, = AGsign(X(T, — Oy)),

A0 A<D
A= X=0

Lin et al, Scientific Reports 2016
Zamandioost et al, IEEE WISP 2015




Proposed DW-MTJ Spintronic NN |

= Neurons are always DW-MTJ devices.

= Synapses can be :
= 2 terminal magnetic synapse (STT-MTJ): Binary

=

Anti-parallel state Parallel state
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G
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~—— "~ Reference layer —y
y

R; = low
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= 2 terminal resistive RAM (ReRAM): Binary or Analog
= 3 terminal DW-MTJ: Binary or Analog
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Proposed DW-MTIJ Spintronic NN Il g

= Unsupervised first-layer variations considered:

= Random weights (no plasticity operation — control case)

= Binary STDP (plasticity updates are constant/sign based)
= Analog STDP (plasticity updates are scaled/numeric)

. Policy Result (size: 200 bw-MTJs)
Unsupervised Layer Supervised Layer
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Analog STDP: reconstructed filters
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Importance of inhibition schemes — @&

= The lateral coupling between DW-MTlJs is important
= Too few neurons fire (too many inhibited : representations too sparse
= Too many neurons fire (too few inhibited): representations too noisy
= At early stage of evaluating if we can fabricate wires at correct dimensions +
spacings
=  More elaborate physics model being built to inform NN simulations

DW-MT] learning: Transition from soft to hard WTA
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Comparisons to other LIF learning systems (i),

—~ 100
=X SR AR 1
= STDP results comparable to best T .
= g0 X"
reported results (93%) [1],[2] for 5 |/
NN combining supervised and 2wy _
unsupervised approaches T e e e a0 o0
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= However, we use a more realistic + Source: [1]

energy-efficient read-out method
Synaptic weights for active neurons

= STDP results are superior to those ..-.-..-
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Summary @

= DW-MTIJ devices are a promising nanodevice to implement analog
accelerator/NN systems
= Not susceptible to classical issues with ReRAM synapses + CMOS Neurons
= Ultra-low energy budgets and rich physics allows LIF behavior: CMOS-free
= Early simulations suggest LIF behavior and plasticity behaviors (STDP) lead to
promising generalization (test-set accuracy) on real tasks ©

Next Steps

= Better analyze upper boundaries of NN performance and compare to MLP, CNN
= Can benchmark results against Cross-Sim software package

= |n principle should be able to stack/combine unsupervised layers
= Obtain accurate energy estimates using DW-MTJ SPICE model [1]
= Integrate physics-rich estimates of lateral inhibition effects
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Thank you!




