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Why analog accelerators?

Three orders magnitude energy savings w/ in-memory computing
• Vector Matrix Multiply (VMM) 
• Matrix Vector Multiply (MVM) 
• Outer Product Update (OPU) 
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Realizing physical matrix kernels

• Ideal Vector-Matrix Mulitply :
• Electrically realisable using

Kirchoff's + Ohm's laws
• Programmable resistors - e.g.

ReRAM/MRAM devices- key component
• Small voltages to read (inference)
• Large voltages to program
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Mapping Neural Networks to Crossbars
Concept error from followin layer

Prototype Experiments
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Challenges for adaptive analog accelerators
• Emerging ReRAM : far from ideal ,

floating-point 'weights' 

• Several key problems:
• Limited resolution

• Read and write noise

• Device stochasticity

• Device non-linearity

• Device asymmetry

• Preliminary analysis: most severe impact 99

from asymmetric non-linearity

• How can we get around this?? 14 • 90

• Increase bio-realism of learning accelerators ->

lower synapse, neuron requirements 0

• The brain does not use backprop (at least as we

currently apply it in ML).
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Major opportunity:
Building neural networks with spintronics components
• Spintronic components alleviate signature device issues of

ReRAM accelerators.
• STT-MTJ/SOT-MTJ: intrinsically binary + stochastic -> non-linearity irrelevant.

• Magnetic devices with analog behavior (Domain wall, skyrmionics) : different

physics, non-linearity immune

• Additional Advantages:
• Extreme endurance (important for online learning + inference)

• Low energy footprint : typically <1V programming, <50ns programming .

• Extreme compactness and CMOS-compatible 1T1R array scaling (BEOL integration)
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Issues with existing spintronic NNs

• Several existing spintronic NNs proposals over-
use CMOS

• Since CMOS will also be important at
system-level (control blocks, routing...), may
lose energy advantages.

• STT/SOT can be current heavy devices. DW
synapses/neurons -> path to aJ rather fi 
elementary switching costs!! 
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DW-MTJ Basic Device Structure
• Domain wall propagates through ferromagnet nanotrack/strip

• MTJ Output at center expresses:
• Logic 1/high output if DW has moved past Output

• Logic 0 / low output if DW has not moved past output.

• Pinned antiferromagnet terminal at end of track: for logic/clock

• Devices have been experimentally fabricated and co-integrated.
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Integration a nd Lea k Behavior
• Integration:

• DW position integrates applied current and stores it (non-volatile)

• Leaking function:

• Critical for neuron reset'/'spike' function and dynamics (volatile)

• Different methods for realizing leak: bottom fixed ferromagnet,

trapezoidal shape, anisotropy gradient
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Lateral Inhibition between DW-MTJs
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Lateral Inhibition: Demonstration
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Application of LIF DW-MTJs

• Max-out operation was
implemented in a
perceptron (1 layer NN)

• Weights were pre-
written before testing

• 94% success rate

• Inference works! 

• Very fast (<1us for entire

test set)

• Very low energy
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Proposed DW-MTJ Spintronic NN I Sandia
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labotatodes

• Previous work showed written weights (e.g. inference only) performance.

• Not online learning! 

• Current work- dual online learning used to recognize MNIST database:

• A first NN layer uses DW-MTJ devices for unsupervised clustering: k-WTA Algorithm 

• A second NN layer uses DW-MTJ devices for max-out operation used in the supervised 

learning process (same as previous). 

• Weight updates: Widrow-Hoff (same as 'delta' rule used in backprop).
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Proposed DW-MTJ Spintronic NN 11

• Neurons are always DW-MTJ devices.

• Synapses can be :

• 2 terminal magnetic synapse (STT-MTJ): Binary

• 2 terminal resistive RAM (ReRAM): Binary or Analog

• 3 terminal DW-MTJ: Binary or Analog
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Supervised Layer
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Proposed DW-MTJ Spintronic NN 111
• Unsupervised first-layer variations considered:

• Random weights (no plasticity operation — control case)

• Binary STDP (plasticity updates are constant/sign based)

• Analog STDP (plasticity updates are scaled/numeric)
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Policy Result (Size: 200 DW-MTJS)

Random 78% test set correct
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A-STDP 92% ""
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Importance of inhibition schemes
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laboratories

• The lateral coupling between DW-MTJs is important

• Too few neurons fire (too many inhibited : representations too sparse

• Too many neurons fire (too few inhibited): representations too noisy

• At early stage of evaluating if we can fabricate wires at correct dimensions +
spacings

• More elaborate physics model being built to inform NN simulations
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Comparisons to other LIF learning systems

• STDP results comparable to best
reported results (93%) [1],[2] for
NN combining supervised and
unsupervised approaches

• However, we use a more realistic +
energy-efficient read-out method

• STDP results are superior to those
obtained using memristor +ReRAM
LIF emulator neurons (78%) [3]

• LIF circuit also had a high level of
complexity

[1] Querlioz et al, IEEE Transactions Nanotechnology 2013
[2] Bennett et al, IEEE IJCNN, 2016
[3] Al-Shedivat et al, IEEE Jetcas, 2015
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Summary
• DW-MTJ devices are a promising nanodevice to implement analog

accelerator/NN systems

• Not susceptible to classical issues with ReRAM synapses + CMOS Neurons

• Ultra-low energy budgets and rich physics allows LIF behavior: CMOS-free

• Early simulations suggest LIF behavior and plasticity behaviors (STDP) lead to

promising generalization (test-set accuracy) on real tasks ©

Next Steps 
• Better analyze upper boundaries of NN performance and compare to MLP, CNN

• Can benchmark results against Cross-Sim software package

• In principle should be able to stack/combine unsupervised layers

• Obtain accurate energy estimates using DW-MTJ SPICE model [1]

• Integrate physics-rich estimates of lateral inhibition effects
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[1] Hu et al, IEEE Transactions Electron Devices, 2019
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