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Interfacial chemistry under nano-scale confinement
3

Emergent chemical behavior due to nano-scale confinement:

• Decreased dielectric constant1-2, surface tension3, and density of water.3

• Decreased solvation energies of metal cations.4

• Increased inner sphere coordination of metal cations.4

• Enhanced metal adsorption5-6, modified redox7 and diffusion properties.8,9

TEM images, P. Lu
MD model, J. Greathouse

1Marti et al., J. Phys. Chem. B (2006)
2Senapati et al., J. Phys. Chem. B (2001)
3Takei et al., Colliod Polym. Sci. (2000)

4Kalluri et al., J. Phys. Chem. C (2011)
5wang et al., Geology (2003)
6Zimmerman et al., Environ. Sci. Techol. (2004)

7Mattia and Calabro, Microfliud Nanofluid (2012)
8Samsom and Biggin, Nature (2001)
81Vla et al., JACS (2019)
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Adsorption of Cu2+ on Mesoporous Silica
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Cu2+ adsorption complexes
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• Enhanced Cu2+ adsorption under nano-scale
confinement;

• More distorted coordination complexes (Cu-
Oax » Cu-Oeq);

• Increase in Cu2+ dimerization inside nano-scale
pores;

• Weak endothermic signal followed by a strong
exothermic signal: Cu2+ undergoes
dehydration during the dimerization process.
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I Research Goals
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Chemistry under Nano-scale Confinement

Effect of pore size on adsorption and coordination of adsorbed species.

Effect of confinement on water properties.

Size decreases across the series
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Research goal 

Quantify the impact of ionic radii  and hydration 
energies  on ion adsorption and ion coordination
chemistry under nano-scale confinement.
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Chemistry of lanthanides
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Approach 

• Single lanthanide adsorption kinetics and isotherms.

• Mixed lanthanide system - competitive adsorption.

• XAS for assessing coordination chemistry of lanthanides.

• Ab initio MD for mechanistic insight.

Lanthanides

• Have large and variable
coordination numbers (CN)1.

• Coordination number vary from 3 to
12, the most common CN=81.

• Crystal structures differ for light
(Z=57-63) and heavy (Z=64-71)
elements'.

Y3' adsorbed to the rutile (110) surface and
forms a tetranuclear surface complex.

Piasecki and Sverjensky, 2
Geochimica et Cosmochimica Acta 72, 3964-3979

1 Huang (2011)
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Batch experiments

Ab initio DFT

Red Sky supercomputer, www.sandia.gov

ICP-MS

Data

Collection

Flow microcalorimetry
inlet Solutions

Signal

magnification

Electronic box

X-ray Absorption Spectroscopy (XAS)
EXAFS spectroscopy instrumental setup APS, Argonne National Lab.

Electron Storage Ring

Monochromator

Ionization Chambers
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Chemical analysis
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Results: adsorption isotherms

• For both SBA-15-4 nm and SBA-15-8 nm with increasing Z uptake increased.
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Results: Pore-size (in)dependence
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• Eu3+ uptake is consistent with Cu2+ results: higher uptake on 4nm, compared to 8nm pores.

- Tm3+ and Lu3+ uptake appears independent of pore size.
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Results: flow microcalorimetry
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• Nd3+, Tb3+, and Lu3+ adsorption is
exothermic on silica with 4nm and 7nm
pores.

• Heat of adsorption depends on pore size.
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Mass (g/mol) Radius (Al Heat (mJ/mg ,nlid)
Lu 174.908 0.848 -0.140 -0.075

Tb 158.925 0.923 -0.157 -0.177

Nd 144.242 0.995 -0.225 -0.184



XAFS: preliminary results for neodymiumii
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• 1st shell fit with two Nd-O
distances;

• Nd-O bond length:

Si02 < 8nm SBA < 4nm SBA.
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XAFS: preliminary results for lutetium
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8nm SBA

4nm SBA

I XAFS: difference between Nd and Lu
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14  Hydrolysis of H20 molecule by lanthanides

0 Okwater)

Ss

Lu(III) desorbs

OH- formlatio

R'

•

•ab initio molecular dynamics (AIMD) simulations + umbrella sampling to force desorption;

•Lu(III) and Eu(III) desorption causes H20 + Si0- -> OH- + SiOH;

•Inner-sphere adsorption is observed, with each lanthanide hydrolyzing one water molecule
upon adsorption onto cristobalite surface.

Leung, et al.
In prep.



1  Summary
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Adsorption of lanthanides onto spatially-confined surfaces

• Mass-dependent adsorption: with decreasing ionic radii, increased uptake.

• Pore-size dependency:

Cu2+ AGH
I -2130 kJ/mot

Nd3+ AGH
-3278 kJ/mot

Tm3+ AGH
-3509 kJ/mot

Lu3+ AGH

I -3556 kJ/mot

• Macroscopically, for heavier elements (Lu3+ and Tm3+) uptake is independent of
pore size, for lighter lanthanides SBA with 4 nm pores has higher uptake.

• XAS data supports macroscopic trends: differences in the local coordination
environment for lighter lanthanides, and no differences for heavier lanthanides.

Size decreases across the series

CD • • • o o o 0 0 0 0 so
58 59 60 61 62 63 64 65 66 67 68 69 70 71

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
Lanthanum Ce6ur6 PMSOOdymium Needrmium Promethium Samarium Europium Gadolinium Terbium Dysixosivrn Holmium Erbium Thulium 5110114vm Lutetivm

128966 Mans 110903 11424 144912 15e36 151956 157 25 156.925 16250 164.934) 15726 166931 17304 171567

Lowest hydration energy Highest hydration energy
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Thank you.
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18 Results: Kinetics of adsorption
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Preliminary results 

• 2nd order reaction.

• For Eu3+ and Lu3+, on 8 nm pores adsorption
is slightly more favorable and faster.

• For Tm3+ the trend is the same as for Cu2+:
faster and more favorable adsorption onto 4
nm, compared to 8 nm pores.



19 Results: Competitive adsorption
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• Increased uptake with increasing Z and decreasing ionic radii.

• Higher uptake on 4 nm- vs 8 nm-silica, but below non-porous Si02.
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