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Interfacial chemistry under nano-scale confinement

Emergent chemical behavior due to nano-scale confinement:

* Decreased dielectric constant!?, surface tension3, and density of water.3
* Decreased solvation energies of metal cations.*

* Increased inner sphere coordination of metal cations.?

* Enhanced metal adsorption>, modified redox’ and diffusion properties.?®
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TEM images, P. Lu MD model, J. Greathouse

IMarti et al., J. Phys. Chem. B (2006) “4Kalluriet al., J. Phys. Chem. C (2011) ’Mattia and Calabro, Microfliud Nanofluid (2012)
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Adsorption of Cu?* on Mesoporous Silica

Cu?* adsorption isotherms

006 a SBA-15-4 006 b SBA-15-6 006 C SBA-15-8
.f 7 &

0.05 0.05 0.05

0.04 0.04 0.04

0.03

Cu Adsorbed (umol/m? )
o
]

Cu Adsorbed (umol/m? )

Cu Adsorbed (umol/m? )

e
o
N

0.02

0.01

L]
01 02 03 04 0

[Cueq MM

0 01 02 03 04 0
[Cul g mM

01 0.2 03 04
[Cu]q, mM

Flg. 2 Adsorption isotherm plots showing the adsorption of Cu on mesoporous materials. a Cu adsorption on SBA-15-4. b Cu adsorption on

SBA-15-6 and ¢ Cu adsorption on SBA-15-8 fit with Langmuir, Freundlich and Dubinin-Radushkevich isotherm models

Cu?* adsorption complexes
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Enhanced Cu?* adsorption under nano-scale
confinement;

More distorted coordination complexes (Cu-
Oax >> Cu-Oeq);

Increase in Cu?* dimerization inside nano-scale
pores;

Weak endothermic signal followed by a strong
exothermic signal: Cu?>* undergoes
dehydration during the dimerization process.
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Cu?* flow microcalorimetry
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Research Goals

Chemistry under Nano-scale Confinement

= Effect of pore size on adsorption and coordination of adsorbed species.

= Effect of confinement on water properties.

Size decreases across the series
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Research goal

= Quantify the impact of ionic radii and hydration
energies on ion adsorption and ion coordination
chemistry under nano-scale confinement.

Zhang, et al.,
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Inorganic Chemistry 53, 7700-774
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Chemistry of lanthanides
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Single lanthanide adsorption kinetics and isotherms.

Mixed lanthanide system - competitive adsorption.

XAS for assessing coordination chemistry of lanthanides. . . .
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Ab initio MD for mechanistic insight.
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Methods

Batch experiments

Flow microcalorimetry
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Results: adsorption isotherms

« For both SBA-15-4 nm and SBA-15-8 nm with increasing Z uptake increased.
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Results: Pore-size (in)dependence

« Eu®* uptake is consistent with Cu?* results: higher uptake on 4nm, compared to 8nm pores.
« Tm3* and Lu®* uptake appears independent of pore size.
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Results: flow microcalorimeiry

4.4 nm silica pores

7.0 nm silica pores
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Transform Magnitude

XAFS: preliminary results for neodymium

1. Nd-SBA-Snml

Real Magnitude

Uncorrected distance, A

Transform Magnitude

2.Nd-SBA-4nm

« 1%t shell fit with two Nd-O

distances;
* Nd-O bond length:
SiO, < 8nm SBA <4nm SBA.

Uncorrected distance, A

Uncorrected distance, A
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ligen, et al.
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Transform Magnitude

XAFS: preliminary results for lutetium

21.Lu-SBA-8nm |

Transform Real

Uncorrected distance, A

Transform Magnitude

21.Lu-SBA-8nm |

« 1%t shell fit with one Lu-O
distance;

 Same Lu-O bond length for
non-porous SiO,, and for
SBA-15 with 4 nm and 8 nm
pores.
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XAFS: difference between Nd and Lu
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Hydrolysis of H,O molecule by lanthanides
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OH- formation
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Lu(lll) desorbs ) -

«ab initio molecular dynamics (AIMD) simulations + umbrella sampling to force desorption;
Lu(lll) and Eu(lll) desorption causes H,O + SiO- => OH- + SiOH;

‘Inner-sphere adsorption is observed, with each lanthanide hydrolyzing one water molecule
upon adsorption onto cristobalite surface.

Leung, et al.
In prep.




Summary

15

Adsorption of lanthanides onto spatially-confined surfaces

Mass-dependent adsorption: with decreasing ionic radii, increased uptake.

* Macroscopically, for heavier elements (Lu3* and Tm3*) uptake is independent of
pore size, for lighter lanthanides SBA with 4 nm pores has higher uptake.

- XAS data supports macroscopic trends: differences in the local coordination
environment for lighter lanthanides, and no differences for heavier lanthanides.

Pore-size dependency:

Cu2 AG, Nd3* AG,,
-2130 kJ/mol -3278 kJ/mol

Size decreases across the series

Lowest hydration energy Highest hydration energy
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Thank you.
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Extra slides




18 | Results: Kinetics of adsorption
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1 | Results: Competitive adsorption
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* Increased uptake with increasing Z and decreasing ionic radii.
« Higher uptake on 4 nm- vs 8 nm-silica, but below non-porous SiO,.




