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Bayesian optimization is an effective surrogate-based opti-
mization method that has been widely used for simulation-
based applications. However, the traditional Bayesian op-
timization (BO) method is only applicable to single-fidelity
applications, whereas multiple levels of fidelity exist in real-
ity. In this work, we propose a bi-fidelity known/unknown
constrained Bayesian optimization method for design appli-
cations. The proposed framework, called sBF-BO-2CoGP,
is built on a two-level CoKriging method to predict the ob-
jective function. An external binary classifier, which is also
another CoKriging model, is used to distinguish between fea-
sible and infeasible regions. The sBF-BO-2CoGP method is
demonstrated using a numerical example and a flip-chip ap-
plication for design optimization to minimize the warpage
deformation under thermal loading conditions.

1 Introduction

Numerous high-fidelity engineering models are devel-
oped nowadays. These models are usually used to predict
some properties and performances of interests, with respect
to a specific design. The properties and performance predic-
tions are then feedback into the design process to find a better
design that outperform the previous ones by changing a few
design parameters. Such process is ubiquitous in industrial
settings, so called design optimization process. Simulation-
based optimization is a challenging and practical problem
due to its high computational cost. However, in practice, the
simulation can be further divided into multiple fidelity levels.
A multi-fidelity framework can be then applied to optimize
the objective function at the highest level of fidelity, but at a
reduced computational cost by fusing with other low-fidelity
data. Thus, the multi-fidelity approach aims at reducing the
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optimization cost by fusing information at different levels of
fidelity. The fused information can be incorporated into a
traditional optimization framework, such as Bayesian opti-
mization (BO), to improve the efficiency.

Multi-fidelity approach is an effective framework to re-
duce the computational cost to approximate the objective
function, by improving the accuracy of prediction through
low- and high-fidelity. In particular, most of the multi-
fidelity methods seek to exploit the correlation between
low- and high-fidelity models in order to approximate the
high-fidelity model more accurately with more low-fidelity
data points. The framework is practical for engineering
simulation-based applications, because most of them are
mesh-based approaches. Some examples include computa-
tional fluid dynamics and solid mechanics problems, which
are widely used by engineers on a daily basis. Regard-
ing the mesh-based approach, a finer mesh corresponds to
a higher level of fidelity, because of smaller discretization
error, whereas the coarser mesh corresponds to a lower level
of fidelity.

Constrained optimization problem is also an important
topic. Digabel and Wild [1] proposed the QRAK taxon-
omy to classifies constrained optimization problems. In en-
gineering settings, constraints arise from multiple sources,
thus both known and unknown constraints are usually ob-
served in the optimization problem. On one hand, constraints
are known if the feasibility of the input can be determined
directly from the input sampling location, without actually
running the simulation or the functional evaluator. Such
known constraints are often formulated as a set of inequal-
ities, which can be evaluated before sampling. On the other
hand, constraints are unknown if the feasibility of the input
must be evaluated indirectly through running the functional
evaluator or the simulation. Some common examples for un-
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known constraints are ill-conditioned problems, singularity
in design, mesh problem, that leads to divergent solutions, to
name a few. These constraints are implicitly imposed, and
cannot be evaluated without evaluating the function or run-
ning the simulation.

Gaussian process (GP) is an efficient methodology to
model a response surface that approximates the objective
function for a single-fidelity. In the traditional BO approach,
an acquisition function a(x) is constructed based on an-
other utility function, which rewards the BO method if the
new sampling location outperforms the rest. The acquisi-
tion function is constructed based on the posterior mean and
posterior variance of the GP. Because of its flexibility, many
extensions have been proposed to solve other optimization
problems, based on the traditional BO framework, includ-
ing constrained and multi-fidelity problems. For constrained
problems, constrained BO is a well-studied subject in the
context of traditional BO methods. In order to include con-
straints in the BO framework, typically a penalty scheme is
adopted to penalize the infeasible sampling locations that do
not satisfy some constraints. For multi-fidelity problems, to
generalize to multiple levels of fidelity, one needs to consider
the correlation at different levels of fidelity. Kennedy and
O’Hagan [2] proposed an autoregressive approach to form
a link between lower-fidelity to the next higher-fidelity by a
linear regression between two levels of fidelity. The terms
CoGP and CoKriging are used interchangeably in this work
to describe the recursive autoregressive GP model. Because
the constrained problems have been relatively well studied,
we will focus the literature review on multi-fidelity GP. The
literature on GP, CoGP, and BO is briefly reviewed in Section
2.

In this work, we proposed a sequential constrained bi-
fidelity sBF-BO-2CoGP method, using CoKriging approach
to approximate the objective function at the high-level of fi-
delity. The known constraints are implemented by penalizing
the acquisition function directly for infeasible input sampling
locations. The unknown constraints are learned adaptively
via another CoKriging model, which acts as a probabilistic
binary classifier. The unknown constrained acquisition func-
tion is also conditioned on this predicted probability mass
function, in addition to the penalty scheme for known con-
straints. The next sampling location is determined by max-
imizing the constrained acquisition function. Next, the un-
certainty reduction scheme, where uncertainty is measured
by the integrated mean-square error, is proposed to determine
the fidelity level, which the function evaluation is performed.
Compared to the maximum mean square error criteria, the in-
tegrated mean square error has been shown to be more robust
and efficient.

In the rest of this paper, Section 2] provides a brief in-
troduction to the BO method. Section 3 describes the bi-
fidelity sSBF-BO-2CoGP method proposed in this paper, in-
cluding the constrained acquisition function, the fidelity se-
lection criteria. Section ] demonstrates the application of the
proposed sBF-BO-2CoGP methodology on 1D and an engi-
neering application in designing flip-chip package. Section
5] discusses and Section [ concludes the paper.

2 Related works
The bi-fidelity optimization considered in this paper is
formulated as

argmax fy (x), (1)
xeX

subjected to a set of inequality constraints

gj(x) <0, €3

where j = 1,...,J is the number of inequality constraints.

In this section, we briefly review the relevant GP model
that is used as a surrogate model for BO, CoKriging method,
the acquisition functions, in Section 2.1}, 2.2}, and 2.3}, respec-
tively. Readers are referred to our previous work [3,4, 5] and
others [6,[7, 8, 9] for rigorous literature reviews on GP and
BO methods and its variants.

2.1 Gaussian process

Assume that f is a function of x, where x € X is a d-
dimensional input, and y is the observation. Let the dataset
D = (x;,y;)Y.;, where N is the number of observations. A
GP regression assumes that f = f.y is jointly Gaussian, and
the observation y is normally distributed given f,

fIX ~ N(m,K), 3)

ylf.0* ~ N(f.6°D), 4

where m; := u(x;) and K; j := k(x;,x;).

The covariance kernel KX is a choice of modeling covari-
ance between inputs. At an unknown sampling location x,
the predicted response is described by a posterior Gaussian
distribution, where the posterior mean is

pn(x) = po (%) + k()" (K +0’ 1) (y—m),  (5)
and the posterior variance is

o2 = k(x,x) —k(x)T (K +*I)'k(x), (6)

n

where k(x) is the covariance vector between the query point
x and x;.5.

2.2 CoKriging

One of the advantages of CoKriging is that it exploits
the correlation between low- and high-fidelity to improve the
prediction. We follow the formulation of Karniadakis et al.
[10,11,12] in formulating the multi-fidelity GP regression.



Let s be the number of fidelity levels, f; be the highest fidelity
model, f; be the lowest fidelity model, and assume that

fi(®) = pr1fior (%) +8:(x),1 =2,....5, ©)

where &, (x) is a Gaussian random field and
Cov(fi(x), fir1(x')] =0,Vx#x". 8)

Kennedy and O’Hagan [2] and Le Gratiet and Garnier [[13]
proposed a nested scheme D; C 7, C --- C D to decouple
s levels of fidelity into s standard levels of GP regression.
Karniadakis et al. [10, 11, 12] employed the same method
to approximate the highest level of fidelity and extended for
noisy evaluations using the same method. Perikaris et al. [14]
proposed a generalized framework that can model nonlinear
and space-dependent cross-correlations between models of
variable fidelity.

In this paper, we only consider two levels of fidelity, and
divide the dataset D into D, and D,, corresponding to cheap
and expensive datasets, respectively. The bi-fidelity formu-
lation is adopted from Couckuyt et al [15,]16,17]. Following
the autoregressive scheme described above, the first GP mod-
els the low-fidelity response {x.,y.}, whereas the second GP
models the residual between the high- and low-fidelity model
d(x). Since there are only two levels, the notion of &, (x) is
dropped and becomes 8(x).

The correlation vector k(x) and the covariance matrix
K (x) are then updated [16,18] as

k(x) = (pGg 'kc<x) p2 '62 'kc‘(x,x))v (9)

K= ( Gg‘KC P‘Gf‘Kc(chXe) > (10)
p-0-Ke(Xe,X.) p*op Ke(Xe, Xe)+05 Ke(Xe, X))
respectively. The predicted distribution of CoKriging
is also characterized by a Gaussian distribution, where the
posterior mean and posterior variance are still described by
Equation [5 and Equation [6].

2.3 Acquisition function

In the traditional BO method, the acquisition function
a(x) is used to locate the next sampling location by maxi-
mizing its acquisition function. The acquisition function is
deeply connected to the utility function, which corresponds
to the rewarding scheme for BO methods, if the next sam-
pling point outperforms the other sampling location in the
dataset.

There are mainly three acquisition functions that are
widely used: the probability of improvement (PI), the ex-
pected improvement (EI), and the upper-confident bounds
(UCB), but other forms also exist, such as GP-PES [19, 20,
21], GP-ES [22], GP-EST [23], GP-EPS [24].

The PI acquisition function [25] is defined as

ap1(x; {x;,yi}iL1,8) = P(v(x)), (11)

where

- ;u(x; {xiv}’i}?]:pe) _f(xbesl)
v = o(x; {xi,yi}Y,,8) ’

12)

indicates the deviation away from the best sample. The PI
acquisition function is constructed based on the idea of bi-
nary utility function, where a unit reward is received if a new
best-so-far sample is found, and zero otherwise.

The EI acquisition function [26,27,[28,29] is defined as

agr(x; {x:,y1}{1,8) = o(x: {x:, 31}, 8) - (Y(0)2(¥(x)) +0((x)).-

(13)
The EI acquisition is constructed based on an improvement
utility function, where the reward is the relative difference if
a new best-so-far sample is found, and zero otherwise.
The UCB acquisition function [30,31,32] is defined as

avcs (6 {xi,yi YY1, 0) = u(x; {x:, yi 1Y 1, 0) +xo(x; {x;, v 1Y |, 0),

(14)
where ¥ is a hyper-parameter describing the acquisition
exploitation-exploration balance.

3 Methodology
In this section, the sSBF-BO-2CoGP method solving the
bi-fidelity optimization problem in Section [2]is described.

3.1 Constraints

We adopted the method from our previous work [3,4,33]
to handle the known and unknown constraints. For known
constraints, where the sampling location is known to be in-
feasible without running any functional evaluation, the ac-
quisition function is penalized as zero. The penalization
scheme is equivalent with multiplying the acquisition func-
tion a(x) with another indicator function I(x), where

1, V(1< j<J):gix) <0,

31 < <) g 0.

The indicator function can be easily implemented by looping
over all the known constraints.

To handle the unknown-constrained problem, an exter-
nal binary probabilistic classifier is employed to predict the
probability of feasibility. Theoretically speaking, the binary
classifier for feasibility is free and up to users. Some exam-
ples are k-NN [34], AdaBoost [35], RandomForest [36], sup-
port vector machine [37] (SVM), least squares support vector
machine (LSSVM) [38], GP [39], and convolutional neural
network [40]. However, some classifiers tend to outperform
others. One notable choice for the binary classifier is the GP
classifier, which performs relatively well on dataset. In sBF-
BO-2CoGP, another CoGP is adopted as a binary classifier to
predict the probability of feasibility of the sampling location
considered.



At an unknown sampling location x, the coupled binary
classifier predicts a probability of feasibility based on the
trained dataset, where the probability of being feasible is
Pr(clf(x) = 1), whereas the probability of being infeasible
is Pr(clf(x) = 0) = 1 — Pr(clf(x) = 1). Again, we condi-
tion the sampling point on this predicted probability mass
function by assigning zero value to the probability of being
infeasible. Taking the expectation of the acquisition func-
tion conditioned on this probability mass function results in
a new acquisition function, which can be rewritten in a prod-
uct form as

a*(x) = a(x) - I(x) - Pr(clf(x) = 1). (16)

Maximizing the new acquisition function a*(x) yields the
next sampling location of sSBF-BO-2CoGP. In practice, we
adopt the covariance matrix adaptation evolution strategy
(CMA-ES) from Hansen et al. [41],42] to maximize the new
acquisition function a* (x).

3.2 Fidelity selection criteria

To determine the level of fidelity in evaluating the
new sampling location, a fidelity selection criteria balanc-
ing the computational cost and integrated mean squared error
(IMSE) reduction is proposed based on one-step hallucina-
tion. The CoKriging surrogate model will briefly consider
two scenarios whether the low-fidelity or the high-fidelity
function should be evaluated, and calculate the IMSE reduc-
tion in two cases. The IMSE reduction ratio is then compared
with the computational cost ratio.

The hallucination process is performed by temporarily
assuming that the observation at the next sampling location
is exactly the same with the CoKriging prediction, and fitting
that sampling location into the CoKriging. The new CoKrig-
ing model is then said to be hallucinated at the next sampling
location point.

Define aggelity to quantify the benefit to cost ratio of run-
ning at the high-fidelity level as

IMSE, hattucinated  Ch

R4 (17)
IMSE], hallucinated ~ CI

Afidelity =

where aggelity quantifies the value of adding high-fidelity data
compared to that of adding low-fidelity data, Cj, and C; are
the computational costs at the high- and low-fidelity levels,
respectively, and IMSE(,) pajicinaed denotes the integrated
mean-squared error if the sampling point is hallucinated.

In the proposed fidelity selection criteria, the IMSE is
calculated as

IMSE = / o%(x)dx, (18)
X

where the 6%(x) field is updated by assuming that y(x) =
u(x), where x is the new sampling point.

If afigelity ratio is less than 1, then the function evaluator
is called at the high-fidelity level, whereas if this ratio is more
than 1, then the function is evaluated at the low-fidelity level.
The proposed fidelity selection criteria defined in Equation
[17) determines the trade-off between running at low-fidelity
and high-fidelity levels. If the high-fidelity return is higher
than the low-fidelity, then the high-fidelity level is chosen,
and vice versa.

Also, to promote the high-fidelity evaluations, a hard
condition is proposed to prevent the imbalance between low-
and high-fidelity datasets, based on the comparison between
the number of data points available, and the relative com-
putational cost between high- and low-fidelity data. If the
ratio of low-to-high fidelity data points is higher the relative
computational cost, then the high-fidelity level will be cho-
sen to evaluate the sampling locations. In practice, the IMSE
is computed by Monte Carlo sampling in high-dimensional
space. It is noted that if the relative computational cost be-
tween the high- and low-fidelity is 1, then fidelity criteria se-
lection always promotes evaluating the sampling data point
at the high-fidelity level.

4 Applications

In this section, we demonstrate the proposed sBF-BO-
2CoGP using a simple analytical example in 1D (Section
@.1), and a real-world engineering application in designing
flip-chip package (Section 4.2).

4.1 Numerical example
In this section, we consider a simple analytic 1D exam-
ple, where the low-fidelity function is

fr(x) =0.5(6x—2)?sin(12x —4) +10(x— 0.5) — 5, (19)
and the high-fidelity function is

fr(x) = (6x—2)*sin(12x —4), (20)

where on x € [0, 1].

First, consider a baseline set of 4 low-fidelity and 2 high-
fidelity data points. We compare the effects of adding low-
and high-fidelity observations on the prediction of CoKrig-
ing. Figure [2 shows the comparison between the posterior
mean u(x) and posterior variance 6>(x) between adding 4
more low-fidelity and 2 more high-fidelity data points, where
the common data points are denoted as blue squares, and the
added data points are denotes as red circles and black dia-
monds.

For the low-fidelity level, Figure [Id and Figure 24 shows
the updated posterior mean u(x) and posterior variance 6°(x)
after 4 more low-fidelity data points are added, respectively.
The posterior mean u(x) prediction slightly improves near
the end of the domain x = 1, but does not improve signifi-
cantly near the other end of the domain x = 0 (Figure [[d).
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Fig. 1: Effects of adding more low-fidelity and high-fidelity on u(x).
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(a) Convergence plots by iteration with different relative computa-
tional cost ratios.
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Fig. 3: Convergence plot of sBF-BO-2CoGP by iteration (Figure ) and by total computational cost (Figure ).

The posterior variance o= (x) slightly reduces at the location
where the low-fidelity data points are added.

For the high-fidelity level, Figure [1b] and Figure 2B
shows the updated posterior mean u(x) and posterior vari-
ance 6°(x) after 2 more high-fidelity data points are added,
respectively. The posterior mean u(x) improves as expected,

as shown in Figure . The posterior variance 6 (x) reduces
to zero for noiseless evaluations at the two added sampling
locations.

Here, we verify the numerical implementation of the
sBF-BO-2CoGP method by considering the minimization
problem argmin fp (x) with no constraint and various compu-



tational relative cost ratio between the high- and low-fidelity
levels. Figure 34 and Figure 3b shows the convergence plot
with respect to iterations and total computation cost, respec-
tively. The case where the relative cost ratio is 1.0 serves as
a benchmark for traditional sequential BO using only high-
fidelity. We verified that when the relative cost ratio is 1.0,
all the evaluations are evaluated only at high-fidelity level.
When the relative cost ratio is higher than 1.0, the sMF-
BO-2CoGP selects the fidelity criteria on-the-fly, using the
fidelity criteria selection described above. It is worthy to
note that Figure Ba only shows the convergence plot at high-
fidelity level. That means, the convergence plot only updates
when a better high-fidelity result is available. The numerical
performance at high-fidelity level of the bi-fidelity sBF-BO-
2CoGP framework degrades when the computational cost ra-
tio increases, because more low-fidelity points are selected at
high computational cost ratio, according to Equation [I7|.

As shown in Figure 3a, when the computational cost ra-
tio is 1.0, the sSMF-BO-2CoGP converges to a sequential BO
with high-fidelity, and is the fastest with respect to the it-
eration. Figure 3B shows on-par performances between the
cases of ratio 1.0 and 2.5, where the performance degrades
when the computational cost ratio increases. However, they
all converge after approximately 7 iterations.

In this example, we consider an initial sampling dataset
comprised of 4 low-fidelity and 2 high-fidelity. The numer-
ical performances are expected to change with different ini-
tial samples, as well as the behavior of high- and low-fidelity
models.

4.2 Flip-chip package design

In this section, we demonstrate the design application
of a flip-chip package using the proposed sBF-BO-2CoGP.
A lidless flip-chip package with a monolithic silicon die
(FCBGA) mounted on a printed circuit board (PCB) with a
stiffener ring is considered in this example. The computa-
tional model is constructed based on a 2.5D, half symmetry
to reduce the computational time.

Figure @ shows the geometric model of the thermome-
chanical finite element model (FEM), where the mesh den-
sity varies for different levels of fidelity. Two design vari-
ables are associated with the die, three are associated with the
substrate, three more are associated with the stiffener ring,
two are with the underfill, and the last one is with the PCB
board. Only two levels of fidelity are considered in this ex-
ample.

After the numerical solution is obtained, the component
warpage at 20°C, 200°C, and the strain energy density of the
furthest solder joint are calculated. The strain energy density
is one of accurate predictors to estimate the fatigue life of the
solder joints during thermal cycling [43].

A vectorized 11-dimensional input is used to parameter-
ize the design. 9 low-fidelity and 3 high-fidelity data points
are used as initial samples. It is noted that not all of the initial
samples are feasible. There are some unknown constraints,
but no known constraint is imposed in this example. We con-
sider that the sampling locations where the FEM solutions

diverge are infeasible. This condition can be regarded as an
unknown constraint, because no prior knowledge regarding
divergence is known beforehand but only after the simulation
is finished. ANSYS Parametric Design Language (APDL)
software is used to evaluate the model in the batch mode with
no graphical user interface. The sBF-BO-2CoGP is imple-
mented in MATLAB, where an interface using Python is de-
vised to communicate with the APDL FEM model. The av-
erage computational time for one iteration is approximately
0.4 CPU hour.

Figure [5] presents the convergence plot of the FCBGA
design optimization, where the feasible sampling points
are plotted as blue circles, whereas the infeasible sampling
points are plotted as red squares. It is observed that the pre-
dicted warpage is converging steadily. The numerical solver
fails to converge on many cases. It has also demonstrated
that the proposed sBF-BO-2CoGP is robust against diverg-
ing simulations, by its convergent objective despite numer-
ous failed cases.

The optimization results are relatively close with to the
design used in the microelectronics packing industry. It is
observed that thin and small die, as well as thick substrate,
are suggested in order to minimize the component warpage.

5 Discussion

The main contribution of this work is the proposal of the
fidelity selection criteria. The criteria is inspired by the work
of Huang et al. [44], where the original criteria is proposed
based on the EI acquisition function as

El(x,]) = ElL,(x)  (21)
X Corr(ff (x), fh(x))  (22)
% . (23)
s7(x) + Gg,l
Cn
X a ’ (24)

where m is an arbitrary level of fidelity, and [ is the highest
level of fidelity. In this scheme, after each point is nomi-
nated at a level of fidelity, a unique sampling point is cho-
sen by looping over all the levels. The uncertainty reduc-
tion is measured in the second term of the above equation,

G,/
1_ )

_— In our scheme, the uncertainty is
s7(x) + Gg,z
INISEh, hallucinated
H\/ISE], hallucinated
tage of the proposed criteria is that it truly estimates the re-
duction of uncertainty at a particular level. While the uncer-
tainty could be measured by the maximum o (x) for x € X
for the uncertainty reduction, the maximal location is often
found on the border of the bounded domain. Another advan-
tage of the proposed criteria is that it removes the restriction
of using EI acquisition, and generalizes to any arbitrary ac-
quisition function. The choice of the acquisition function

measured by in Equation [17. One advan-
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Fig. 5: Convergence plot of flip-chip package design evalua-
tion to minimize the flip-chip warpage.

is left to users as a choice. Previous work by Gauthier et
al. [45,46] and Silvestrini et al. [47] have shown that the
performance of IMSE supersedes the performance of max-
imal MSE. The scheme proposed by Huang et al. [44] in
Equation 21| can be further generalized to some other com-
monly used acquisition functions, such as PI and UCB. Fur-
thermore, multiple acquisition functions can be considered
simultaneously based on their performance, as in GP-Hedge
scheme [48].

In the implementation, the CMA-ES framework is
adopted to maximize the acquisition function a*(x). For
computationally expensive high-fidelity simulations, the
CMA-ES parameters must be tuned to search carefully with
multiple restarts to avoid local minima. In practice, optimiz-
ing the acquisition function takes some amount of time, thus
it also reduces the efficiency of the method. However, it has
been rarely discussed in the literature, and there is not so
many work dedicated to benchmark and quantify the com-
putational cost of this process. For batch-sequential parallel
BO approaches, the computational cost is much more severe,
particularly with simulations that are associated with large
infeasible space.

The use of the probabilistic binary classifier to learn and
distinguish feasible and infeasible region also depends many
factors of the problems. Essentially, the classifier needs to
accurately predict the feasibility before the optimal point is

obtained. This depends largely on the dimensionality of the
problem considered. However, once the feasibility is accu-
rately predicted, through Equation [16] the convergence to the
global optimal point is guaranteed through the classical BO
framework. The analytical convergence rate can be found in
the seminal work of Rasmussen [39].

While the proposed sequential bi-fidelity sBF-BO-
2CoGP aims at improving the efficiency compared to the se-
quential high-fidelity BO, the efficiency can be further im-
proved by performing parallel optimization. That is to sam-
ple multiple locations concurrently (i.e. at the same time)
and asynchronously (i.e. sampling points do not have to wait
for others to complete). The proposed bi-fidelity framework
serves as a foundation work to tackle the constrained multi-
fidelity problem in an asynchronously parallel manner. The
research question remains open and poses as a potential fu-
ture work.

6 Conclusion

In this paper, a sequential bi-fidelity BO optimization,
called sBF-BO-2CoGP, is proposed to solve the constrained
simulation-based optimization problem. A fidelity selec-
tion criteria is proposed to determine the level of fidelity for
evaluating the objective function value. Another CoKriging
model is coupled into the method to classify the next sam-
pling point and distinguish between feasible and infeasible
regions.

The proposed sBF-BO-2CoGP method is demonstrated
using a simple analytic 1D example, as well as an engi-
neering thermomechanical FEM for flip-chip package de-
sign optimization. The preliminary results provided in this
study demonstrates the applicability of the proposed sBF-
BO-2CoGP method. However, more benchmark studies are
needed to draw a conclusion.
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