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» | Motivation

Direct optical measurement of a
magnetic field gradient

High sensitivity in the Earth’s magnetic
field

* High common mode rejection

Application: magnetoencephalography
and magnetocardiography
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Basic ldea — Produce a beat note signal
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4 I More detailed description
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5 | More detailed description

QWP B
Polarization
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Selector: Sideband pass
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s | More detailed description
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7 | More detailed description
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s | More detailed description
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9 | More detailed description
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10 | Sideband Generation

Modulation of the index of refraction
- Polarization rotation at the hyperfine

frequency
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| Sideband generation from coherence
11

* Microwave optical double - Sideband signal oscillatesat 2 2 - Sidebands maximized when
resonance (MODR) signal on resonance. coherence is maximized.
oscillates at the Rabi frequency, Q.

Detuning: 0 kHz 3 kHz 14 kHz
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12 | Sideband Optimization: Buffer Gas Pressure

Effect of number density and buffer gas pressure
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13 | Figure of Merit

Figure of merit

- Reflects the performance of the gradiometer
o FOM = +/S/w,

> § = sideband signal amplitude

o The linewidth w, = 1/(n T5).

Probe on continuously throughout the
measurement.

> The probe power is 12 uW.
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14 | Sideband enhancement: Retroreflected probe laser
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15 | Prototype Design

e All components are dropped-in design. Requires minimum alignment.
* Improved gradient cancellation coil design.




In Earth’s Field

100}

16 I Results |
Gradient Noise Measurement
104 E
103 |
| | |
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= Data rate: 320 Hz
$7Rb cells with 30 torr N, and 15 torr Nz o Photon Shot Noise: ~6 fT/cm/rt-Hz I
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Data and photo courtesy of QuSpin



17 | Heartbeat Measurement

Heartbeat
measurement of an
adult male

Bandpass: 3-45 Hz
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18 1 Conclusion

* Demonstrated beat note detection of a gradient
» Use hyperfine structure

» Optimized sensitivity versus buffer gas pressure
and temperature

20 fT
VHz*cm

- Earth’s field sensitivity as low as

* Next steps:
- Make more compact
* Dead-zone free
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20 | Abstract

Optical Beat Note Readout of a Magnetic Gradient

P.D.D. Schwindt,! K. Campbelll, Igor Savukov3, Y.J. Wang?, and V. Shah?

'Sandia National Laboratories, Albuquerque, NM, USA
2 QuSpin Inc., Louisville, CO, USA
3L os Alamos National Laboratories, Los Alamos, NM, USA

Typical gradient measurements using optically pumped magnetometers consist of making two
independent measurements and then subtracting the results electronically. We present a technique
where the gradient of the magnetic field is derived directly from the optical signal [1]. Using two 8"Rb
vapor cells, the atoms are pumped into the |F = 2, m. = 2> stretched state. Then, a resonant microwave
pulse is applied to make a superposition between t'lfle |2,2> and |1,1> levels, and a resonant 780-nm
probe beam is passed through the two vapor cells. With the atomic superposition precessing at the
hyperfine splitting frequency, the probe laser will be modulated, parametrically generating an optical
sideband [2]. If there is a magnetic field gradient between the two vapor cells, the sidebands will have a
frequency difference and generate a beat note. Thus, the beat note frequency will be proportional the
magnetic gradient. We will present an experimental implementation of this technique and describe efforts
to improve the sensitivity and to eliminate dead zones of the gradiometer.
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Can we make the sensor more compact?

21
* Pump and Carrier along the same axis?

* Selection rules prohibit sideband generation on the [F=1, ms = 1> to [F=2, m; = 2> transition.

* Selection rules allow only Am = 0 transitions.
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s Pul > Pulse
— Pulse _
mg -2 -1 0 1 2 my =2 12
_ L Single axis pump and probe
Microwave Radiation )
/L B Filter: PBS: 85Rb Filter

PBS ’ 780 pass  Sideband Pass €l
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Can we make the sensor more compact?

“ % . Pump and Carrier along the same axis?
* Selection rules prohibit sideband generation on the [F=1, ms = 1> to [F=2, m; = 2> transition.
* Selection rules allow only Am = 0 transitions
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Can we make the sensor more compact?

= 8 Pump and Carrier along the same axis?
* Selection rules prohibit sideband generation on the [F=1, ms = 1> to [F=2, m; = 2> transition.
¢ Selection rules allow only Am ;= 0 transitions
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Problems with this orientation

24 F=2 L
] 71'
« We can only pump the atoms to a single ground 1 2 Pulse
state, not an individual Zeeman sublevel F=1 ._ ._
* Reduced sideband amplitude my 2 _1 0 1 2
Solutions?
Single axis pump and probe
B Filter: PBS: 8Rb Filter
A
PRS Migres @ ——— 780 pass_ Sideband Pass “®!

Probe: 780 nm
P\
Pump: 795 nm
A2
Atoms optically pumped to the end-state . .
.. Ambient field
— F=2 — perpendicular to Bc

F=1 — — F=1 Bl —@ Ambient field
parallel to Bc
mg =2 -1 0 1 2 ms -2 -1 0 1 2



s | Case |: Ambient field perpendicular to the laser axis

We rotate the quantization axis, while maintaining

the atomic population in the |2,2> state. Rotate 12,2> ,
Reference ’ Spin vector must
& Frame follow torque
vector to be
B Biot adiabatic
Vapor R |1,1>
Cell g
@ ‘ 4 By
' Spin
Bc |1,1> Vector

To be adiabatic, the rotation rate of the field must be

less than the Larmor precession frequency % << wj. Selection rules now allow Am = 1 transitions

Microwave Pulse l

Sideband Signal |2,2>
( BC f— F = 2 - T — T

Adiabatic turn off Pump — 5 pulse




26
Compare adiabatic field switching to the old method of hyperfine pumping. B I
> Observe ~90% 1n the |2,2> state with optical pumping: expect improvement with lager B v
: : : : ] Yapor
> Adiabatic switch does not degrade populations Cell
_—
> See a 10x improvement in sideband size B,
Swept MODR signal . Sideband Amplitude
1.8
16
1.6 M \/\/\/"W“‘_"__
1.4 1-0 Transition A == Quantization Axis Rotation
Amp = .11V 12}
S 1.2 . ' Hyperfine Pumping
g g
=) =
£ 0.8 508/
Q
E 0.6 “ost
<
0.4 | 0l
2-1 Transition
0.2 Amp = 1.278 V 02 }
0
1600 1700 1800 1900 o an i 1B

Case |: Results

Data Points

Time(ms)

Probe Power = ~20 uW; Detuning near F = 1; Useing Rb-85 filter cell;
Buffer gas: 30 Torr N2; Cell Temp = 98 °C;

v



27 | Case 2: Ambient field parallel to the laser axis

We perform adiabatic rapid passage to transfer the population from the|2,2> state to the|1,1> state.

We use a magnetic field ramp to simplify microwave and cover both cells.
|2,2>

12,2> 12,2>

Torque Magnetic field must be ramped
. Vector slow enough that the Spin vector
follows the Torque vector

=== _Spin Vector

11,1> 1,1> 111> . .
Selection rules allow Am, = 0 transitions
Pump off Adiabatic Microwave Pulse
turn ff Sideband Slgnal I
\ Hm o Bc o F = 2 — —
\ / i Pump — — T
/ _ 2 ARP




s | Field parallel to the laser axis

Compare adiabatic field switching to the old method of hyperfine pumping.
> Observe ARP from 2,2> to |1,1>

> Use a single microwave synthesizer
> The percentage of the transfer uncertain
> See a 4x improvement in sideband size on the |1,1> to |2,1> transition.
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» | Comparison of four experiments

Quantization axis rotation currently working better than microwave ARP
* Why is this?

Sideband Comparison

181
Quantization Axis Rotation, Perp. Field
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1 | Can we work towards dead-zone free operation?

Quantization axis rotation

Minimum field
B

Of-a _f—> >> - Vapor

=2 Pt anny, ] Ccell [~
° For T2 = 0.1 ms, By > 230 0T Bc:
How to switch between the two schemes F=2 __ — ——
o Start up: - o

. Determine ambient field and direction using a field o
zeroing scheme m. -2 10

2. Select scheme, microwave frequency, and direction

of B ARP with longitudinal field

3. Begin operation. om— =
> Continuous operation: S
. Monitor signal size HE
2. If signal size drops below threshold, switch scheme. EE— _m[— -
1. If this fails, re-zero field. F=1 —

Need to understand better how to ramp Bc for ARP m -2 -1 0 1 2



