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2 Motivation

Direct optical measurement of a
magnetic field gradient

High sensitivity in the Earth's magnetic
field

High common mode rejection

Application: magnetoencephalography
and magnetocardiography
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Basic Idea — Produce a beat note signal
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4 More detailed description
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5 More detailed description
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6 More detailed description
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7 More detailed description
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8 More detailed description
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9 More detailed description

Pump
795 nm

QWP

Probe
780 nm

Microwave Radiation

G radiometer Process

1) Pump atoms to the end-state

_/
87Rb Pi 

87Rb
Cell 1 Cell 2

N2: 30 N2: 15
Torr Torr

2) Apply a 2 pulse of magnetic energy to put the atoms in

a coherent superposition

3) Send in Probe light to generate a sideband in each cell

4) Beat the sidebands together to produce a beat note

Polarization
Selector: Sideband pass

> 4

7ci
c
on

3

i7)
2

1

0

1
J

PDY-Ny

Beat Note Signal

fhfs,1 — fhfs,2 = —7kHz

Hz
fB = 7kHz + 2 1 n7T AB

5) Measure the frequency of the beat note to determine 0 .5 1
the magnetic gradient between the cells Time (ms)

1.5 2



Sideband Generation

Modulation of the index of refraction
Polarization rotation at the hyperfine
frequency
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Sideband generation from coherence

Microwave optical double
resonance (MODR) signal
oscillates at the Rabi frequency, Q.
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12 Sideband Optimization: Buffer Gas Pressure
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13 Figure of Merit

Figure of merit
Reflects the performance of the gradiometer

FOM = AIK/w2

S = sideband signal amplitude

The linewidth w2 = 1/(Tr T2).

Probe on continuously throughout the
measurement.
The probe power is 12 uW.
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14 Sideband enhancement: Retroreflected probe laser
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Prototype Design

scA)5C\C (pe
'Rt

7.75 cm

• All components are dropped-in design. Requires minimum alignment.
• Improved gradient cancellation coil design.



16 Results

87Rb cells with 30 torr N2 and 15 torr N2

Separation: 4.4 cm

In Earth's Field

Gradient Noise Measurement
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Data and photo courtesy of QuSpin



17 Heartbeat Measurement

Heartbeat
measurement of an
adult male

Bandpass: 3-45 Hz
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18 Conclusion

Demonstrated beat note detection of a gradient
Use hyperfine structure

Optimized sensitivity versus buffer gas pressure 6

and temperature 4

7,3

Earth's field sensitivity as low as 
20 fT 3
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Next steps:
Make more compact
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20 Abstract

Optical Beat Note Readout of a Magnetic Gradient
P.D.D. Schwindt11 K. Campbell1, Igor Savukov3, Y.J. Wang2, and V. Shah2

1Sandia National Laboratories, Albuquerque NM, USA
2 QuSpin lnc., Louisville, CO, USA

3Los Alamos National Laboratories, Los Alamos, NM, USA

Typical gradient measurements using optically pumped magnetometers consist of making two
independent measurements and then subtracting the results electronically. We present a technique
where the gradient of the magnetic field is derived directly from the optical signal [1]. Using two 87Rb
vapor cells, the atoms are pumped into the IF = 2, mF = 2> stretched state. Then, a resonant microwave
pulse is applied to make a superposition between the 12,2> and 11,1> levels, and a resonant 780-nm
probe beam is passed through the two vapor cells. With the atomic superposition precessing at the
hyperfine splitting frequency, the probe laser will be modulated, parametrically generating an optical
sideband [2]. If there is a magnetic field gradient between the two vapor cells, the sidebands will have a
frequency difference and generate a beat note. Thus, the beat note frequency will be proportional the
magnetic gradient. We will present an experimental implementation of this technique and describe efforts
to improve the sensitivity and to eliminate dead zones of the gradiometer.

References
Vishal Shah, System and Method for Measuring a Magnetic Gradient Field. Patent. US10088535
(2018).
Tang, H. Parametric Frequency Conversion of Resonance Radiation in Optically Pumped Rb87 Vapor.
Phys. Rev. A, 7, 2010-2032 (1973).



Can we make the sensor more compact?
Pump and Carrier along the same axis?

Selection rules prohibit sideband generation on the F=1, mf = 1> to F=2, mf = 2> transition.

Selection rules allow only AmF = 0 transitions.
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Can we make the sensor more compact?
Pump and Carrier along the same axis?
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Problems with this orientation
24

• We can only pump the atoms to a single ground
state, not an individual Zeeman sublevel

• Reduced sideband amplitude

Solutions?

Probe: 780 nm

Pump: 795 nm
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25 Case I:Ambient field perpendicular to the laser axis

We rotate the quantization axis, while maintaining

the atomic population in the 12,2> state.

11,1> iiii‘
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To be adiabatic, the rotation rate of the field must be

less than the Larmor precession frequency
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2t, I Case I : Results

Compare adiabatic field switching to the old method of hyperfine pumping.

Observe —90% in the 2,2> state with optical pumping: expect improvement with lager Bc Vapor
Adiabatic switch does not degrade populations Cell

B t

See a lOx improvement in sideband size Bc
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27 I Case 2:Ambient field parallel to the laser axis

• We perform adiabatic rapid passage to transfer the population from the12,2> state to thel 1,1> state.

• We use a magnetic field ramp to simplify microwave and cover both cells.
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slow enough that the Spin vector
follows the Torque vector

Selection rules allow AmF = 0 transitions
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28 I Field parallel to the laser axis

Compare adiabatic field switching to the old method of hyperfine pumping.

Observe ARP from 2,2> to 1,1>

O Use a single microwave synthesizer

O The percentage of the transfer uncertain

See a 4x improvement in sideband size on the 11,1> to 12,1> transition.
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Comparison of four experiments

Quantization axis rotation currently working better than microwave ARP

Why is this?
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3lJ 6 Can we work towards dead-zone free operation?

Minimum field

f1—>2 — fi-4 >> 27r Tm12

For T7/2 = 0.1 ms, Bmin » 230 nT

1

How to switch between the two schemes

Start up:

Determine ambient field and direction using a field
zeroing scheme

,
Select scheme, microwave frequency, and direction
of Bc

3. Begin operation.

Continuous operation:

1. Monitor signal size

2. If signal size drops below threshold, switch scheme.

If this fails, re-zero field.

Need to understand better how to ramp Bc for ARP
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