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Research Efforts
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- Advance fundamental understanding of ché
mechanical coupling associated with isotog
signatures in subsurface fluids to develop in situ
sensors for rock deformation and failure

" Pore scale multiphase flow and
reactive transport
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Microfluidic fabrication and patterns
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Laser Scanning Confocal Microscopy

Laser-scanning Confocal Microscope

Zeiss LSM510 Meta

3D flow fields

Optical sections
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modified from Lima et al. (2006)

* Inverted optical & confocal microscope with epifluorescence and reflected
differential interference contrast (DIC) microscopy
» Multiscale resolutions (5x — 50x) from 2um to 0.2 um resolution



Pore Scale Reactive Transport Experiments

 Pore scale experiments of (transversely mixing induced) reactive transport and
precipitation & dissolution in a microfluidic pore-network

Experimental setup

Na,CO,,

7 pH=11

CacCl, ,
Syringe pump  pH=6

Zhang et al. (2010)
Chojnicki et al. (under review, ES&T)

Microscopic image of
calcium carbonate
(CaCO,) precipitates

harvardapparatus.com

250 microns

 Two solutions are mixing along the centerline and CaCO; precipitates
* Microscopic images are taken over time



Pore Scale Modeling of Reactive Transport

Research Details

— Simulate experimental results of CaCO, precipitation and dissolution in

a microfluidic pore network

— Improve understanding of the fundamental physico-chemical
processes of CaCO;, precipitation and dissolution at micro (pore) scale

for coupled reactive transport systems

Applications
— Reaction rates ~ f(system
parameters)
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Experimental image (top)
Simulated CaCO, dist. (middle)
Simulated pH dist. (42min) (bottom)

Yoon et al. (2012)




Pore Scale Model Framework

horizontal velocity (cm/min)

Lattice Boltzmann Method:
Velocity field (u) at pore scale
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Experimental Results

CoFpH=~1y (GO TIOmMat=100 brs

e Precipitation ~ along the centerline within 1-3 pore spaces in the transverse direction
e Width of the precipitate line ~ increase with distance from the inlet

e Precipitation/dissolution rates are concentration and species dependent

¢ Dissolution creates nano-particle plume of reactive transport tracer
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Image Analysis

- Segmentation is performed to estimate reaction
rates and reactive surface areas

- Imaging resolution

ge of 3-D segmented images  3-D profile of precipitates (101m thick)

Ratio to the reference resolution
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Reactive Surface Areas

- What is a reactive surface area?

- Precipitation area, vertical surface area, effective
surface area, ...

Reactive surface area
(area/volume)
IAP

Keq

R — kA( _ 1) Extent of non-equilibrium

Reaction Rate Kinetic rate constant
(mass/volume/time) (mass/area/time)



How can we model reactive transport in
a microfluidic system?

1. Quasi 3D grid cell for reactive surface

Sum

Reactive surface area (a,,):
Horizontal plane
~ f(space, time)

20pm

Cylinder Reaction surface: !
Top and bottom of CaCO3
micromodel & cylinder post

Numerical grid cell
2. Effective diffusion coefficient = D, * tortuosity ( 7)

-t(V,)=(1-V_ ) wheren~ 0 to 3
- Diffusion is allowed until the grid cell is fully occupied by CaCO,

Yoon et al. (2012), WRR
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Simulation results — increase surface

area during dissolution by 300
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Amorphous Calcium Carbonate
& Vaterite

Matching simulation to late-time
dissolution

Predominantly Vaterite

Increase in surface area over time
Conversion to more dense form of CaCO,

Reaction rate derived from process-based growth model at nano-scale
(Wolthers et al., GCA, 2012)

Effect of nano-crystal size on solubility (Emmanuel and Ague, Chem. Geo.
2011)



CaCO, Dissolution Process

(a) chroscopy lmage at 24 hr during the dlssolutlon phase (b) Horizontal flow velocity (cm/min)
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(e) Calcite SR (case 2)

Chojnicki et al. ES&T, Under review

* Dissolution process is governed by flow patterns and dark plume of dissolved
species is governed by local hydrodynamics and local chemistry (e.g., pH)



Testing bed of adsorption/desorption & precipitation/dissolution of calcium

Ongoing Work

carbonate in real-rock mock-up

Measurement of effluent concentrations of isotope in the presence of calcite obstacle patterns

with known surface geometry and media structure

Real-time imaging of change of calcium carbonate morphology with precipitation/dissolution
Note: similar configuration will be employed into a nano-fluidic device

Calcite

Hydrostatic compaction of granular calcite

Calcite Compaction

® di H20
* NaHCo3

Na2504

Sr isotopes in calcite

86, ppb | 87, ppb | 88, ppb
30.504 22.413 279.844
% % %
9.17 6.74 84.10

Injection and transport of sorbing
species

Calcite pre-deformation




Summary and Implications

Mineral precipitation rate along flow direction is
concentration dependent and limited by transverse mixing

CaCO; mineral phases are concentration dependent

Overall, reaction kinetics, crystal growth and morphology
are spatially and temporally affected by solution chemistry
and hydrodynamics at pore scale

Pore-scale model can be used to test if pore-scale processes
observed in micromodels is predicted, and to develop an
upscaled reaction model



Little Grand Wash Fault, Crystal Geyser, Utah

= Observations along the surface exposure of the Grand Wash fault indicate alteration
zones of 10-50 m width with spacing on the order of 100 m

= Locations of conduits controlled by fault-segment intersections and/or topography

= Sandstone permeability reduced by 3 to 4 orders of magnitude in alteration zones by
carbonate cementation

¢ Recharge Area

an Rafael Swell

Far from fault Near fault

! h
o 00
Brines from Paleozoic aquifer
+ Crustal CO,

Altman et al. 2014

Yoon et al. JPSE 2017



Conceptual Model of Cementation Patterns
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Peter Mozley (NMT), Unpublished



Pore scale modeling for response surface

= Pore-scale modeling results will be able to develop the response functional
forms of permeability, porosity, and surface area changes as a function of pore
structures, volume, Pe, Da number, mineral types, and influent solution

chemistry

(a) Velocity (cm/min)

e Pe & Da numbers
Pe(uL/D) = 0.08, 0.8, 8
Da(kL/(Kspo-SxD))

= 0.002, 0.02, 0.1
e Chemical speciation

Yoon et al. JPSE 2017



Permeability-Porosity Relationships

High Pe; Low Da

Low Pe;
Medium Da
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High Pe & High Da

CaCOj; volumetric content

T=70 days } 5

T=175 days

T=245 days | .

T=350 days

| d S— . | &)

T [Ca],—[CO,*],=20mM
= Precipitation occurs near the main fault and clogging of fracture networks
moves away from the main fault conduit as observed in the outcrop




Summary

Detailed investigation of fault-controlled CO2 leakage conduits in Little
Grand Wash Fault, Crystal Geyser, Utah where carbonate
cementations significantly decreases permeability

Vigorously tested pore-scale model was used to develop a
permeability and porosity (k-€) relationship for continuum-scale model

Pore scale model was able to qualitatively capture pore clogging
patterns in a simple fracture network model mimicking the Little

Grand Wash fault

An adaptive strategy to couple pore- and continuum scale using
machine/deep learning methods will be tested against cement
precipitation patterns



