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Understand the Microstructure and Properties in Additive Manufactured
Stainless Steel

*How do the microstructural features present in these materials contribute to strength?
*How spatially uniform is the microstructure and corresponding properties?

*Goal: Build complex designs correctly the first time with reliable and predictable properties!
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Laser-deposited material displays excellent
combination of strength and ductility




Need to Understand Each of These Features
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The Similarity to Welds Becomes Clear with Microscopic Investigation
of Grain Morphology
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Analogies to welding will help to understand
the microstructural evolution



Grain Boundary Strengthening
1 .
- o, = yield strength
AO'y = kaD 2 kaP = constant
e e e b= graln size

o, difference near/far from baseplate
Fine scale microstructure
3-9 MPa
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Fine-Scale Structural Modulations

Steel can solidify into multiple crystal structures

° y-Austenite is face-centered cubic

o O-Ferrite is body-centered cubic

° Typical forging would not result in a fine distribution
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Amount of Ferrite has Little Effect on Properties
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Fine-Scale Compositional Modulations from Cellular Solidification

Cr enrichment at cell boundaries

> Microprobe confirms ~1.5 wt. %
enrichment

o DED structures have a cell size of
approximately ~1 pm

o PBF results in much finer-scale
segregation (~500 nm)

5.5 6 6.5 7 75
Energy (keV)




‘Compositional Microsegregation Strengthening

d = solidification cell spacing
A = amplitude of microsegregation

s, = 0.57M (AnY)3 Z”Gb) ce mis
O'y = U. n ( 4 n = lattice r;&s(ﬂlt parameter

+v)

2
3

J.W. Cahn, Acta Metall. Mater., 11, (1963). (1 - U)

o, difference near/far from baseplate
Ao, =9 -12MPa

Microsegregation has greater effect
than grain size
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‘ Small Round Inclusions are Oxides not Pores

Small oxides uniformly
dispersed

° Pulls O and S out of bulk

° Can aid in ductility by decreasing O

and S in solution

o Can strengthen the material as in an

oxide dispersion strengthened steel S5
Mn-Si-Ti-O-rich

Mn-S-rich
Si-0 rich
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M = mean orientation factor
G = shear modulus

2T
“lb b = Burgers vector
0.4Gb In ( b ) v = Poisson’s ratio
r = particle radius
vVl —v A A = inclusion spacing

K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia,
J.M. Schoenung, Acta Materialia, 62 (2014) 141-155.

o, difference near/far from baseplate
6 -8 MPa

‘ Oxide Dispersion Strengthening

A0y=M

Oxide inclusions unlikely to cause
significant strengthening

Increasing distance
from baseplate
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Is That Everything!?
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Dislocation Cell Structure is Evident in These Materials and Similar to

Forging

Forged 304L

Chang et al., Acta Mat 165, 2019, p203.

The dislocation structure can resemble
structures that are observed from
forging, but there is some suggestion the
dislocations may not be uniformly
distributed in a built structure
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Measurement of Geometrically Necessary Dislocations with EBSD
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‘ Dislocation Strengthening :
6 Ao, = MaGbp2

K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia,
| J.M. Schoenung, Acta Materialia, 62 (2014) 141-155.

M = mean orientation factor
15 G = shear modulus

b = Burgers vector

i o = constant

o, difference near/far from baseplate
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Microsegregation Dissolves
at Low Temperature
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At lower temperatures, recrystallization can
not initiate until the compositional
microsegregation homogenizes




The Microstructural Landscape will Guide an Understanding of
the Properties
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Strengthening Contribution of Each Microstructural Feature is Quantifiable
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Different Thermal Histories Lead to Different Strength Properties

Builds experience different
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25 I GND Distribution Varies with Build Location
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Summary and Conclusions

*Investigated in detail the microstructural features that are found
in steels produced by new metallurgical processes and
quantified their strength contribution

* Grain boundaries
~

* Cell Boundaries ot / ¥
* Ferrite izt
* Oxide Particles Graimn Boundaries

* Dislocations

*The location-specific thermo-mechanical history can alter
microstructure and properties (e.g. residual stress, yield

strength, dislocation density, ductility).

*Moving Forward: Predictive models will be able to provide
guidance for how best to build a structure to optimize its
performance in a particular application (predicting the best
thermal history)

¢ Laser parameters
* Scan Strategy

¢ Composition

® Etc.



27 I Conclusions

*Local melting, solidification, and subsequent cyclic heating in DED steels creates a new kind of
thermal history with microstructural properties similar to welds but smaller

*The properties of these materials can be comparable to conventional counterparts under certain
conditions
* >99% dense material

¢ The location-specific thermo-mechanical history can alter microstructure and properties (e.g. residual stress,
yield strength, dislocation density, ductility).

*Moving Forward: Predictive models will be able to provide guidance for how best to build a structure
to optimize its performance in a particular application (predicting the best thermal history)

* Laser parameters
* Scan Strategy

¢ Composition

* Etc.



