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Understand the Microstructure and Properties in Additive Manufactured
Stainless Steel

•How do the microstructural features present in these materials contribute to strength?

•How spatially uniform is the microstructure and corresponding properties?

•Goal: Build complex designs correctly the first time with reliable and predictable properties!

rLaser-deposited material displays excellentcombination of strength and ductility
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Need to Understand Each of These Features
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Need to Understand Each of These Features
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The Similarity to Welds Becomes Clear with Microscopic Investigation
of Grain Morphology

1 mm 304L/308 Gas Tungsten Arc Weld

1 mm 400 W Directed Energy Deposition 304L

Analogies to welding will help to understand
the microstructural evolution

1 mm 2kW Directed Energy Deposition 304L

Electron Beam
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Image Mapping
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1 Grain Boundary Strengthening

Acry = kHF,D 2
K. Ma, H Wen, T. Hu, T.D. Topping, D. lsheim, D.N. Seidman, E.J. Lavernia, J.M.
Schoenung, Acta Materialia, 62 (2014) 141-155.

a difference near/far from baseplate

3 - 9 MPa

oy = yield strength

kHP = constant

D = grain size

Fine scale microstructure
has greater influence
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Need to Understand Each of These Features
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I Fine-Scale Structural Modulations Develop During Solidification

Steel can solidify into multiple crystal structures
• y-Austenite is face-centered cubic
• 6-Ferrite is body-centered cubic
• Typical forging would not result in a fine distribution
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12 
Amount of Ferrite has Little Effect on Properties
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Need to Understand Each of These Features

meg El

7 000 x
chmell

30 5

HV

2.00 kV
HFW

59.2 rn
curr

0.20 nA
det

CBS

mode

All
tilt
0

WL)

3,9 mrn
if]

Hello;



I Fine-Scale Compositional Modulations from Cellular Solidification
Cr enrichment at cell boundaries
. Microprobe confirms —1.5 wt. %

enrichment

- DED structures have a cell size of
approximately —1 vim

o PBF results in much finer-scale
segregation (-500 nm)
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1 Compositional Microsegregation Strengthening
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I Small Round Inclusions are Oxides not Pores

Small oxides uniformly
dispersed
• Pulls O and S out of bulk

• Can aid in ductility by decreasing O
and S in solution

• Can strengthen the material as in an
oxide dispersion strengthened steel
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1 Oxide Dispersion Strengthening
06y=M

— v

(Th
0.4Gb In

K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia,
J.M. Schoenung, Acta Materialia, 62 (2014) 141-155.

M = mean orientation factor

G = shear modulus

b = Burgers vector

v = Poisson's ratio

r = particle radius

= inclusion spacing

a difference near/far from baseplate

6 - 8 MPa

Oxide inclusions unlikely to cause
significant strengthening
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I Is That Everything?
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Dislocation Cell Structure is Evident in These Materials and Similar to
Forging

Forged 304L
Chang et al., Acta Mat 165, 2019, p203.

The dislocation structure can resemble
structures that are observed from
forging, but there is some suggestion the
dislocations may not be uniformly
distributed in a built structure
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Measurement of Geometrically Necessary Dislocations with EBSD
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Calcagnotto, M., et al., Materials Science and Engineering: A, 2010. 527(10-11): p. 2738-2746.
Lawrence, S.K., et al., Metallurgical and Materials Transactions A, 2014. 45(10): p. 4307-4315.
Moussa, C., et al., IOP Conference Series: Materials Science and Engineering, 2015. 89(1): p. 012038.
Kubin, L.P. and A. Mortensen, Scripta Materialia, 2003. 48(2): p. 119-125.
Gao, H., et al., Journal of the Mechanics and Physics of Solids, 1999. 47(6): p. 1239-1263.
Kamaya, M., Ultramicroscopy, 2011. 111(8): p. 1189-1199.

3



1 Dislocation Strengthening

AGND = 4.3x1013 m-2 The

We can control the dislocation density with thermal
history
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K Ma, H. Wen, T. Hu, T.D. Topping, D. !sham, D.N. Seidman, EJ. Lavernia,
J.M. Schoenung, Acta Materialia, 62 (2014) 141-155.

M = mean orientation factor

G = shear modulus

b = Burgers vector

a = constant

oy difference near/far from baseplate

21 - 25 MPa

Dislocations significantly
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Microsegregation Dissolves
at Low Temperature
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T.R. Smith, J.D. Sugar, J.M. Schoenung, C. San Marchi, Anomalous Annealing Response of
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At lower temperatures, recrystallization can
not initiate until the compositional
microsegregation homogenizes



I The Microstructural Landscape will Guide an Understanding ofthe Properties

Grain Boundaries A

:;""
X

mag ❑

7 000 x

HV

2.00 kV 0.20 nA

det

CBS

mode

All

tilt
0 3.9. rim

10 pm --11
Helios



32
500

1 Strengthening Contribution of Each Microstructural Feature is Quantifiable
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Different Thermal Histories Lead to Different Strength Properties

Builds experience different
thermo-mechanical histories
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25 GND Distribution Varies with Build Location
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Summary and Conclusions

•Investigated in detail the microstructural features that are found
in steels produced by new metallurgical processes and
quantified their strength contribution
• Grain boundaries

• Cell Boundaries

• Ferrite

• Oxide Particles

• Dislocations

•The location-specific thermo-mechanical history can alter
microstructure and properties (e.g. residual stress, yield
strength, dislocation density, ductility).

•Moving Forward: Predictive models will be able to provide
guidance for how best to build a structure to optimize its
performance in a particular application (predicting the best
thermal history)
• Laser parameters

• Scan Strategy

• Composition

• Etc.

Cell Boundari



27 Conclusions

•Local melting, solidification, and subsequent cyclic heating in DED steels creates a new kind of
thermal history with microstructural properties similar to welds but smaller

•The properties of these materials can be comparable to conventional counterparts under certain
conditions
• >99% dense material

• The location-specific thermo-mechanical history can alter microstructure and properties (e.g. residual stress,
yield strength, dislocation density, ductility).

•Moving Forward: Predictive models will be able to provide guidance for how best to build a structure
to optimize its performance in a particular application (predicting the best thermal history)

• Laser parameters

• Scan Strategy

• Composition

• Etc.
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