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MATERIALS AGING & DEGRADATION
IN EXTREME ENVIRONMENTS
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"The only source of knowledge is experience."
Albert Einstein (1879-1955) 2



Radiation damage and aging

Picoseconds

Tens of nrn
time 0.0001 ps

Nordlund (2008)

"Special" Physics
• keV-energy collision

between nuclei
• Energy loss to electronic

excitation
• Transition to high P-T
• Long term relaxation

Microseconds - Days

Hundreds of nrn - Hundreds of prn

Muntifering et al. (2015) Mater Res Lett.

Radiation Damage
• Defect production:

Frenkel pairs, Cascade
• Transmutation
• Segregation
• Amorphization
• Sputtering
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Radiation Effects
• Hardening
• Swelling
• Embrittlement
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MODEL DAMAGE PRODUCTION AT THE ATOMIC
SCALE USING MOLECULAR DYNAMICS: BALLISTIC EFFECTS
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MODEL DAMAGE PRODUCTION AT THE ATOMIC
SCALE USING MOLECULAR DYNAMICS: SIMPLE WAY

Electron irradiation
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Introduction N FPs
every 2ps • Effective dose rate: 8x10-4 dpa/ps

• Unrealistic dose rate!
• 300 K, constant P, T

Frenkel pair

• Maximum allowed displacement
(SRIM)
• Example: First collision range

for Zr/Nb targets
• Zr 104 A
• Nb Zr: 77 A
• Nb Nb: 103 A
• Zr Nb: 78 A
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DEFECT ACCUMULATION MECHANISMS:

EXAMPLE OF DEFECT ACCUMULATION IN NB

0 .1)( szo
DPA

Total 136C
Other

1 /2<111>
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<110>

112<111> <100>
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BEYOND FRENKEL PAIR ACCUMULATION:
MODELING LIGHT/HEAVY ION IRRADIATION

Reduced-order
representation

Periphery with atoms
pushed outwards

(interstitials)

Hot cascade
core

Atoms movements
causing replacements

within the core
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PREDICTABILITY OF THE REDUCED-ORDER
ATOMISTIC CASCADE MODEL:

DEFECT PRODUCTION
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PREDICTABILITY OF THE REDUCED-ORDER
ATOMISTIC CASCADE MODEL:

DEFECT STATISTICS
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PREDICTABILITY OF THE REDUCED-ORDER
ATOMISTIC CASCADE MODEL:

DEFECT MORPHOLOGY
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APPLICATION:
CASCADE FRAGMENTATION

11.3 ked
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(a) MD PKA - Fragments (b) NED PRA - Defects (c) MD PKA - DisplacementE

it

(d) ROAC - Fragments

20 in)

• !mu-A(10 ske
• inearier site

WM=

dispiattment vecEar >1.0 A

i ROAC - Defects (f) RAOC - Displacements

High PKA cascades (100 keV here) are decomposed into subcascades.
Subcascades are spatially inserted to reproduce large cascade breakup.
Tremendous computational saving with reduced-order atomistic cascade model
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APPLICATION:
HIGH DOSE ION BOMBARDMENT
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(a.) Integral Primary Recoil (b) 1 MeV proton source (c) 1 MeV Cu ion source

Spectrum

Cascades are sampled from the recoil spectra and randomly inserted into computation d

Similar in philosophy to FPA method
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APPLICATION:
HIGH DOSE ION BOMBARDMENT AT PHASE
BOUNDARIES



TAKE HOME MESSAGE:

• Simulations of the accumulation of radiation-induced
defects using a Reduced-Order Atomistic Cascade
Mode'

• Cascade approximated as core-shell structure
• Atomic mixing (core)
• Athermal recovery corrected damage (shell)

• Verification and validation against full PKA cascade simulations
yield good predictions and approximation of cascade

• Most linamtwasisupportunities 4...e to investigate damage
accumulation 4--id dose effects

• Fragmentation
• Phase boundaries
• Effect of radiation damage on mechanical
properties
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