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2 I MD Approximations Change Over Time

Twobody (B.C.)

Lennard-Jones, Hard

Sphere, Coulomb, Bonded

Manybody (1980s)

S tillinger-Web er, Ters o ff,

Embedded Atom Method

http://lammps.sandia.gov

Advanced (90s-2000s) Big Data / Deep /
REBO, BOP, COMB, Machine Learning (2010s)
ReaxFF GAP, SNAP, NN,...

Plimpton and Thompson, MRS Bulletin (2012).

MEAM

•
ReaxFF

AIREB 0
•

•BOP

GAP

•
COMB

eFF

•

_
CHARMm

0 • 
0 

_

- -
SPCIE • EIM

T stillinger-Weber 
•
REB0 n ,_

•
•

- EAM Tersoff -

1990 2000
Year Published

2010

SNAP

u_
a

o

A

Resources are limited, which is your best choice?

• LJ •
• Qualitative Properties

EAM
•

COMB -
• • Near QM Accuracy

SNAP
• 

GAP
• 

►

Computational Cost



3 Machine Learning to Bridge Electronic-Atomic

Classical, Empirical Potentials

• Metals

o EAM: Assume spherical electron density
r. — r (v _ (,. .11 _L 1 v m _ (,. .1

1 ccL.4.1#i piivii)) 1 2 Lij#L wag y Li)LI 1

• Inorganic

o Stillinger-Weber: Assume 2,3-body
harmonic springs

• Organic
1

o ReaxFF: Assume covalent bonding,

smooth bond-orders between all

interacting atoms

Machine Learned Potentials

• Metals, Inorganic, Organic, et

o Assume energy and forces are some
Cil in r-1--; z-Nri 

of local atomic 
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descriptors

• Needs reference data to be properly trained

  to get the 'right' energies and forces



4 I Spectral Neighborhood Analysis Potential (SNAP)

gr -iergy of atom i expressed as a basis expansion

over K components of the bispectrum (fit
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Regression Method

.7-vector fully describes a SNAP potential

• Linear kernel decouples MD speed from training

set size
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5 ML-IAP for HED States of Carbon:Training

T Training Data

• Structures included (by-hand) were chosen

for their relevance to HED experiments on

Carbon

• Focus on high pressures, condensed phase

(i.e. not fullerenes)

• Database details:

o 7000+ configurations

o Pressures between 0-1TPa
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o Temperatures between 0-20,000K -10

In collaboration with Ivan Oleynik at USF
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• Hydrostatic Diamond

O Hydrostatic USPEX

• Uniaxial Diamond
4 Uniaxial USPEX
V Shear Diamond
• GSF Diamond
— Diamond Binding Energy
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o Diamond, Graphene, BC8 and Volume (Å
3
/atom)

thousands of crystal search results.
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1
6 ML-IAP for HED States of Carbon: Material Properties
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7 ML-IAP for HED States of Carbon: Extrapolation

Beyond Training

• Diamond melt curve using 2-phase, stable

interface, MD simulations

• Slopes look good w.r.t. DFT, max error is

7% at P=250GPa

• Still some discrepancy, should new training

data be added?

o Improve agreement at these state points

o Temper the system from bad dynamics

at very high P,T

o Sacrifice accuracy elsewhere in the fitted

properties
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8 Missing Physics/Chemistry in Current Comp.Tools

Approaching H   HD states via different physical processes:

1. Shock compression, coupled Pressure & Temperatur

•Final HED state is determined by initial condil

2. Ramp compression, nearly isothermal Pressure rise
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9 Molecular Dynamics with Extra Degrees of Freedom

Classical spin dynamics

• Ruled by a per-atom resolution of the Landau-Lifschitz-Gilbert (LLG)

equation: ds, 1
[co, x si ± As, x (co, x si)]

dt (1+ A2)
With si classical magnetic spins, lambda a damping coefficient and coi

precession vectors derived from a spin Hamiltonian.

Spin Hamiltonian for H Fin conditions

Hex —

N 4

i rt=

Lin Is
N

• Contains transverse and longitudinal spin fluctuations 'necessary for high

P/T conditions.

• Will be implemented in LAMMPS.

Surh, M. P. et al. (2016). Magnetostructural transition kinetics in shocked iron. Phys. Rev. Lett., 117(8), 085701.



10 Molecular Dynamics with Extra Degrees of Freedom

Diffusion equation for the electronic temperature

OT,
Ce = V (KeVT,) —

at
ge—s(Te — Ts) ge_p(Te — Tp)

with Te,Tj. and Tp the electronic, spin and lattice temperatures, Ce and xe the electronic
heat-capacity and heat-conductivity, and g the electron-spin and electron-lattice relaxation
rates.

• Resolution on a grid of the diffusion equation for Te (in
black on the right).

• This grid is overlay on top of a spin-lattice MD simulation
cell (in red).

• Langevin thermostats, exchange coefficients and spin-
lattice Hamiltonian are coupling the evolution of the three
temperature.

• Model parametrized from ab initio calculations.
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Duffy, D. M., & Rutherford, A. M. (2006). Including the effects of electronic stopping and electron—ion interactions in radiation damage simulations. J. Phys.: Cond. Matt., 19(1), 016207.



1 1 1 Conclusion + Ongoing SNAP Development Areas

• SNAP development is targeting a space where few other potentials

exist, or where traditional potentials lack quantitative accuracy.

• Biggest worry about generated potentials is how 'robust' they are.

• Exploring accuracy/cost tradeoffs with other L-IAP

ECP - EXAALT : Extending MD Time Et Accuracy

• InP : Explicit multi-element bispectrum

• Neural Nets 'Ning hisnectruni clescriptors

• Learn-on-the-Fly methods for training curation
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