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2 I MD Approximations Change Over Time

Lennard-Jones, Hard
Sphere, Coulomb, Bonded

http://lammps.sandia.gov

Advanced (90s-2000s) Big Data / Deep /
REBO, BOP, COMB,
ReaxFF GAP, SNAP, NN....

Machine Learning (2010s)
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3 I Machine Learning to Bridge Electronic-Atomic

Classical, Empirical Potentials Machine Learned Potentials

o ReaxFF: Assume covalent bonding,
smooth bond-orders between all
interacting atoms




4 | Spectral Neighborhood Analysis Potential (SNAP)

Model Form

* Energy of atom i expressed as a basis expansion
over K components of the bispectrum (By)

Eivip = ap + Z [a,(j)(B,i ~By,) + a,(c”)(...)n]
k

Fitting

Hyper-parameters
Regression Method h

* «a vector fully describes a SNAP potential

* Linear kernel decouples MD speed from training

set size DAKOTA
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5 | ML-IAP for HED States of Carbon: Training

In collaboration with lvan Oleynik at USF

DFT Training Data Sro———— T T T T 1
*  Structures included (by-hand) were chosen 6Fa ® Hydrostatic Diamond
y : @ Hydrostatic USPEX
for their relevance to HED experiments on 4k ¢  Uniaxial Diamond
Carbon s ¥ g
8 2 ® GSF Diamond
*  Focus on high pressures, condensed phases S ° — Diamond Binding Energy
(i.e. not fullerenes) > 0T
A4
: > -2
*  Database details: a0 I
;-4
2 T
o 7000+ configurations I
g 3 [
o Pressures between 0-1TPa sk
o Temperatures between 0-20,000K 14— ' ' - -
2 3 4 5 6 7
o Diamond, Graphene, BC8 and Volume (A’ /atom)

thousands of crystal search results.
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ML-IAP for HED States of Carbon: Material Properties

Elastic Properties: \/
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7 | ML-IAP for HED States of Carbon: Extrapolation |

Diamond melt curve using 2-phase, stable
interface, MD simulations Q 9000 :
Slopes look good w.r.t. DFT, max error 1s \0)/ 3000
7% at P=250GPa — :
5 7000f
H o
Still some discrepancy, should new training ¢S :
data be added? TR
£~ 5000
o Improve agreement at these state points E p
L 4000
o Temper the system from bad dynamics = a
at very high P'T 3000 | | | | | |
o  Sacrifice accuracy elsewhere in the fitted 0 100 f)oo 300 40(()}]300 600 700
properties ressurc ( a)

Correa et. al., PNAS 103, 0510489103 (2005) Benedict et. al., Phys Rev 89, 224109 (2014) I
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Approaching HED states via different physical processes:

1.

Temperature (K)

Missing Physics/Chemistry in Current Comp. Tools

Shock compression, coupled Pressure & Temperatur

*Final HED state 1s determined by initial condr

)
Jupiter
5:4 bee
liquid Earth fcc
10 100 1000

Pressure (Mbar)

Phase transitions occur along these paths:
Structural : BCC to HCP, melting &
Magnetic : Ferro- to Non-magnetic

Electronic & Thermal : Discontinuous transport properties

LDRD-20-0014: A. Cangt, J. Tranchida, M. Wood, M. Desjarlais
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Molecular Dynamics with Extra Degrees of Freedom

Classical spin dynamics

® Ruled by a per-atom resolution of the Landau-Lifschitz-Gilbert (LLG)

cquation: g s; 1 \
— i X 8i i X Wi X 8§
T ) (Wi X siFAsix (wixsi)]

With s; classical magnetic spins, lambda a damping coefficient and w,

observables

precession vectors derived from a spin Hamiltonian.

Spin Hamiltonian for HED conditions

observables

N 4 N
2n
H,, = — Z ZIZ"“ B Z 8,85 (S + Kz 84| |85 + Liy8i85)
i n=1 i,,i#]

@ Contains transverse and longitudinal spin fluctuations ‘necessary for high
P/T conditions.

@ Will be implemented in LAMMPS.

Surh, M. P. et al. (2016). Magnetostructural transition kinetics in shocked iron. Phys. Rev. Lett., 117(8), 085701.



10 I Molecular Dynamics with Extra Degrees of Freedom

gbservables

Observableg

Dittusion equation for the electronic temperature

0T,
ot

with T,, T, and T, the electronic, spin and lattice temperatures, C, and #, the electronic

Co =8 =V (keVTL) = gous(To — Ts) — Go—p(To — T))

heat-capacity and heat-conductivity, and g the electron-spin and electron-lattice relaxation

rates.
® Resolution on a grid of the diffusion equation for Te (in T.
black on the right). TR
® This grid 1s overlay on top of a spin-lattice MD simulation f‘ i ; : ; i
CCH (lﬂ I'Cd). 4 $ s sl $
® Langevin thermostats, exchange coefficients and spin- : : li : : : :
lattice Hamiltonian are coupling the evolution of the three
temperature.
® Model parametrized from ab initio calculations. 3
b cand T

Duffy, D. M., & Rutherford, A. M. (20006). Including the effects of electronic stopping and electron—ion interactions in radiation damage simulations. J. Phys.: Cond. Matt., 19(1), 016207.



11 I Conclusion + Ongoing SNAP Development Areas
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* SNAP development is targeting a space whete few other potentials £ | \ '
. . . . . . ~ \\ Jmax =3
exist, or where traditional potentials lack quantitative accuracy. > ¢ o
E 6- \\\ ‘ Jmax =3 .
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ECP - EXAALT : Extending MD Time & Accuracy

* InP : Explicit multi-element bispectrum

e Neural Nets using bispectrum descriptors
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