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2 This project has been a large interdisciplinary effort

Diagnostic Development
E.C. Harding, M. Schollmeier, G.P. Loisel, S.B. Hansen

Sample Development
S.B. Hansen, P.J. Christenson, P.F. Knapp, T. Mattsson

■Target Fabrication
■ Haibo Huang, Reny Paguio, Brian Stahl

■ General Atomics, La Jolla, CA

Modeling and Source Development
R. Vesey, P. J. Christenson, T. Mattsson, K. Beckwith, C. Kopenhafer, L. Stanek, R. Clay III, M. Murillo

Multi-species BGK theory and code development
J. Haack (LANL), L. Stanton (SJSU), M. Murillo (MSU) and C. Hauck (ORNL)



3  Understanding material transport across an interface is fundamentally tied to our
understanding of mix

•How does an interface go from perturbed to mixed

•Is it just hydrodynamic stirring/turbulence?

What role does diffusion play?

In addition to distorting the hotspot shape and
introducing vorticity, perturbations will
• increase the surface area available for transport

processes

• decrease the scale length over which transport needs
to operate to mix a volume

Unfortunately fluid models don't account for
transport processes well, particularly in strongly
coupled plasmas



1 We want to measure the "blurring" of an interface between
a strongly coupled mid-Z element and a low Z material
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Plasma Transport Sample and Diagnostic
Concept

a_

t = 0.1-0.5 pm

Conceptual Sample
Half moon sample allows transmission to be
obtained from the attenuation

Linear array of High-Z material allows integration
of data along one dimension

Sample heated using Hohlraum from one side
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I Fabrication of the sample required significant R&D by general atomics

metrology
samples

Samples on wafer

Sample on hohlraum w/ Be tamper attached

bbbb

5VO/pArnl striwpidees: /1/0"

150iim pitch if

517..inq bottom

Radiation Drive

400 µrn 30 mg/cc CH foam

C:1111010 30 µm Be Tamper

• Requirement of sharp interface led to use of lithographic technique

Significant effort in metrology for areal density, mixture properties, and edge widths

Material provided by Haibo Huang, General Atomics



First plasma transport experiments have been executed on Z
demonstrating the feasibility of the proposed measurement

• Executed two experiments in March testing x-ray heating and

diagnostics performance

• Demonstrated good contrast of the sample in the radiographs

on shot z3220 (6.1 keV backlighter with detector placed at

closer focal position)
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8 I A closer look at the experimental data

There is a clearly visible difference between the two
frames

The V strips appear to get "squeezed"

o There is a substantial absorption difference
(hohlraum emission makes it difficult to assess this)

o The width of the strips is approximately correct,
though the resolution is not as good as anticipated
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9 I Boltzmann Equation for HED Plasma Transport

Direct integration of equations of motion:

o Too expensive for timescales & length scales of interest for
plasma transport experiments

Dense plasmas: strongly collisional and near equilibrium:

O Adopt a multi-species Boltzmann model to provide kinetic
decrrintinn nf nlacma trincnnrt

solution
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Stanton & Murillo (2016): Fig.1
O Has to guarantee conservation of mass, momentum and energy Relevant Structure of Kinetic Theory

and that the entropy is constant to increasing (H-theorem) [for transport in HED Plasmas]



10 BGK Collision Operator for H E D Plasma Transport

Dense plasmas: strongly collisional and near equilibrium:

Expand collision operator about equilibrium: BGK-like
approach (Haack et al., 2017a)

0 Replace Boltzmann collision operator with a relaxation
operator that (Haack et al., 2017a):

Conserves particle number, momentum and energy
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er — Weiti Mt.
feimb

into viwr

(4-4)+Po 01-34.).
gr+

Cross distribution depends on single species density, mass
and cross velocity, temperatures and interspecies collisions
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solution
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molecular
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binary
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I
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Stanton & Murillo (2016): Fig.1
Relevant Structure of Kinetic Theory

[for transport in HED Plasmas]

0 Unknown: how to compute collision rates?



11 I Collision Rates for HED Plasma Transport

Dense plasmas: strongly collisional and near equilibrium:

• Expand collision operator about equilibrium: BGK-like approach (Haack
et al., 2017a)

O BGK collision operator has the form:

air 1000111 WAC) = .11MJA4MJAMC.
Issues:

Analytic form only known for Maxwell molecules

0 Integral here is singular for (e.g.) Coulomb potentials

Compare momentum, temperature relaxation rates for Boltzman vs.
BGK collision merators:
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relaxation or temperature relaxation.

, Utilize generalked Coulomb logarithm from Stanton & Murillo (2016) to
comnute collision cross-sections
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Relevant Structure of Kinetic Theory

[for transport in HED Plasmas]
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Stanton & Murillo (2016): Fig.10
Dimensionless self-diffusion coefficient
computed using screened interaction

tz =0.5



1 2 Hydrodynamic Equation for HED Plasma Transport

Dense plasmas: strongly collisional and near equilibrium:

Adopt a multi-species Boltzmann model to provide kinetic
description of plasma transport:

8,44
- ji +at F Veit

at
Hydrodynamics found from taking moments over distribution
function:

ni fides Pt = mini/ vi = miefidei

Mass conservation: apia +v.. uter) v.,(Avi) =Ix
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Relevant Structure of Kinetic Theory
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13 I Hydrodynamic Equation for HED Plasma Transport

Dense plasmas: strongly collisional and near equilibrium:

Adopt a multi-species Boltzmann model to provide kinetic
description of plasma transport:

C ji + at Veit
at

Hydrodynamics found from taking moments over distribution
function:

ni

Mass conservation:
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1
fide, Pi = minis mickfic,

Momentum conservation:

(ply} +Vz (pilli) =0,

NPT) 
+V.-(prov)+Vz-P= Erna.at

solution

many-body
Hamiltonian

molecular
dynamics
Newion's laws

1E9 Oliarno 
Energy conservation: +- vx. on)) + vz -44-P:170r= EpArt •ar,

0 Closures: P = licv*+ (VW —213W -

binary
collisions

Iroîtzmann
cross secoon

scattering
week

I
phase-space
clescri pti1311

with ensemble
averaging

• BBGKY
torre lati on
expansion

Lenard-Balescu
a leiaCtIr IC response

Landau/Fokker-Planck
Coulognb logarithm

no
scseening

.4 

Stanton & Murillo (2016): Fig.1
Relevant Structure of Kinetic Theory

[for transport in HED Plasmas]

(it= -KW+
tr



14 I BGK Theory Predicts Non-Fluid-like Plasma Transport at CHO-DT Interface

Haack et al. (2017b):

Utilize multi-species Vlasov-Poisson-BGK system
to study plasma transport at CHO-DT interface

• Electrir fiPlrl rnryiniiterl qc•
,

E=z—V/A,
44r A

• Thomas-termi electron model: strong electric fields
form at interface (—GeV/m).

733YA
 17,m2K

• Hydrogen can separate trom the plastic and mix
into the fuel (also dependent on the electron
heating model).

• Ion diffusion velocities sufficiently large c.f. ion
thermal speed to invalidate assumptions used in
deriving Navier-Stokes-like fluid equations from
VBGK-system

Predictions made with hydrodynamic models
should be falsifiable
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Haack et al. (2017b): Fig. 5. (above); Number densities (10-22/cc,
dotted lines) and diffusion velocities (solid lines) for H (green), C
(brown) and D (black) at 500fs (left) and 10 ps (right). Note the

separation between the C,H distributions at the interface and that the
H has diffusion velocities — thermal velocity



1 Plasma Transport Sample and DiagnosticConcept

Conceptual Sample

a_ 
w/ V stripes w/o V stripes

t = 0.1-0.5 pm

♦

1

Dv = 50pm
4_ Dal z 2Dv

Utilize electrostatic multi-species kinetic code to study plasma transport at CHO-V/A1 interface

• 1d periodic setup (simulate 1 bar V/A1, 1 bar CH)

• Thomas-Fermi Average Atom model for ionization state

• Fermi-Dirac statistics for electrons

• Momentum relaxation model for ion-ion collisions

Simulation setup: replace DT-mix with V at 90% solid density with 10% Al doping

• Ions initialized at 10eV

• Assume radiation and electrons are in temperature equilibrium:

c Ramp electrons from 10eV to 200eV

At experimental densities, electrons exhibit quantum effects below 10eV, therefore start
simulations at 10eV (4ns)
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1 Plasma Transport Sample and DiagnosticConcept

Conceptual Sample

a_ 
w/ V stripes w/o V stripes

t = 0.1-0.5 p m 1

A

0

Dv = 50pm
4_ DcH z 2Dv

Utilize electrostatic multi-species kinetic code to study plasma transport at CHO-V/A1 interface

• 1d periodic setup (simulate 1 bar V/A1, 1 bar CH)

• Thomas-Fermi Average Atom model for ionization state

• Fermi-Dirac statistics for electrons

• Momentum relaxation model for ion-ion collisions

Simulation setup: replace DT-mix with V at 90% solid density with 10% Al doping

• Ions initialized at 10eV

• Assume radiation and electrons are in temperature equilibrium:

c Ramp electrons from 10eV to 200eV

At experimental densities, electrons exhibit quantum effects below 1 OeV, therefore start
simulations at 10eV (4ns)
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17 I Kinetic Modeling of V/CH Interface:
Electrons in Thermal Equilibrium with Radiation

200 —

175 —.FL,
cp 150 —
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0

0 5 10 15 20 25 30

time [ns]

Utilize electrostatic multi-species kinetic code to study
plasma transport at CHO-V/A1 interface

O Thomas-Fermi Average Atom model for ionization
state

• Fermi-Dirac statistics for electrons

O Momentum relaxation model for ion-ion collisions 200 -

Simulation setup: replace DT-mix with V at 90% solid
density with 10% A1 doping

O Ions initialized at 10eV

O Assume radiation and electrons are in temperature
equilibrium:

Ramp electrons from 10eV to 200eV
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18 I Kinetic Modeling of V/CH Interface: Electrostatic Fields
Electric Field Strength [MeV/m]
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0 Simulation setup: replace DT-mix with V at 90%
solid density with 10% Al doping

O Thomas-Fermi Average Atom model for ionization
state; Fermi-Dirac statistics for electrons

o Momentum relaxation model for ion-ion collisions

o Ions initialized at 10eV; ramp electrons from 10eV

, 023
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1.32 0
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to 200eV over 5ns

0 Observe strong electric fields that spread into plasma
with time:

O Electrons rapidly spread through the sample

O Complex variability patterns in both the electric
field and the electrons
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19 I Kinetic Modeling of V/CH Interface: Synthetic Radiography

Ransmission
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Synthetic Radiography for PSF=12 [pm], Window=1.0 [ns]
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0 Simulation setup: replace DT-mix with V at 90%
solid density with 10% Al doping

O Thomas-Fermi Average Atom model for ionization
state; Fermi-Dirac statistics for electrons

o Momentum relaxation model for ion-ion collisions

o Ions initialized at 10eV; ramp electrons from 10eV
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40

0 Claire Kopenhafer (MSU; Summer 2019 CSGF Practicum)
developed synthetic radiography tools based on YT:

O Enables comparison of sample evolution to experimental
data

O Mean transmission imprinted with variability pattern
associated with electric field

O Vanadium broadens and ratio between 'trough' and wings
decreases

•
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20 I Kinetic Modeling of V/CH Interface: Synthetic Radiography

1.2
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0.35 0.4 0.45 0.5

X Position [mm]

0 Simulation setup: replace DT-mix with V at 90%
solid density with 10% Al doping

O Thomas-Fermi Average Atom model for ionization
state; Fermi-Dirac statistics for electrons

o Momentum relaxation model for ion-ion collisions

o Ions initialized at 10eV; ramp electrons from 10eV
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40

0 Claire Kopenhafer (MSU; Summer 2019 CSGF Practicum)
developed synthetic radiography tools based on YT:

O Enables comparison of sample evolution to experimental
data

O Mean transmission imprinted with variability pattern
associated with electric field

O Vanadium broadens and ratio between 'trough' and wings
decreases
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21 I Kinetic Modeling of V/CH Interface: Changing the Collision Model
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Utilize electrostatic multi-species kinetic code to stu
plasma transport at CHO-V/A1 interface
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O Thomas-Fermi Average Atom model for ionization
state

O Fermi-Dirac statistics for electrons

• Temperature relaxation model for ion-ion collisions 200

° Simulation setup: replace DT-mix with V at 90% solid
density with 10% A1 doping

O Ions initialized at 10eV

O Assume radiation and electrons are in temperature
equilibrium:

0 Ramp electrons from 10eV to 200eV
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22 I Kinetic Modeling of V/CH Interface: Electrostatic Fields
Electric Field Strength [MeV/m]

1

-20 0 20
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GOO

400
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Simulation setup: replace DT-mix with V at 90% solid
density with 10% Al doping

• Thomas-Fermi Average Atom model for ionization
state; Fermi-Dirac statistics for electrons

• Temperature relaxation model for ion-ion collisions

• Ions initialized at 10eV; ramp electrons from 10eV to

1000 -
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I 2.16

1.28 0
40
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111

Similar to CHO-DT case, observe strong electric fields
that spread into plasma with time

• Electrons remain confined within the Vanadium strip

• Electric fields —2x stronger in plastic than in previous
case
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23 Kinetic Modeling of V/CH Interface: Synthetic Radiography

Transmission

—40 —20 0 20 40

x x 10-4[cm]

Synthetic Radiography for PSF=12 Window=1.0 [ns]
1.0000 1.0 
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- 0.6429
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Simulation setup: replace DT-mix with V at 90% solid
density with 10% Al doping

• Thomas-Fermi Average Atom model for ionization
state; Fermi-Dirac statistics for electrons

• Temperature relaxation model for ion-ion collisions

• Ions initialized at 10eV; ramp electrons from 10eV to

121 14
. , i
—20 0 20

x x 10-4Icml
40

200eV over 5ns

Claire Kopenhafer (MSU; Summer 2019 CSGF
Practicum) developed synthetic radiography tools based
on YT:

• Significantly reduced variability in mean transmission

• Transmission profile distinct from previous case, but
still broadens and flattens

•
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24 I Kinetic Modeling of V/CH Interface: Synthetic Radiography
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Simulation setup: replace DT-mix with V at 90% solid
density with 10% Al doping

Thomas-Fermi Average Atom model for ionization
state; Fermi-Dirac statistics for electrons 0

0 Temperature relaxation model for ion-ion collisions 0

0 Ions initialized at 10eV; ramp electrons from 10eV to 0

40
i . . .

-40 -20 0 20

x x 10-4[cm]

40

Claire Kopenhafer (MSU; Summer 2019 CSGF
Practicum) developed synthetic radiography tools based
on YT:

Distinct differences between transmission profiles for
two collision models

Distinguishable at experimental resolution

Neither case resembles experimental data at qualitative
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Radiation Hydrodynamics: How fast are we heating anyway?

N

400 pm 30 mg/cc CH foam 400 pm 3 mg/cc CH foam
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Radiation Drive

400 µm 30
mg/cc CH foam

0.5pm top CH

ViAl stripes, No
50pm wide,
150pm pitch_..... ..... _____ ________

(----- 5pm bottom CH _.._

Si ring

30 pm Be Tamper

ALEGRA Radiation hydrodynamics calculations conducted at
experimental conditions reveal sensitive to CH foam properties

• Foam optical depth at experimental densities sufficient to prevent
sample from heating

• Radiation shock at late times drives instability on sample surfaces

• Lowering effective optical depth of foam allows sample to heat
but exhibits significant expansion
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V/AI stripes, /town
50pm wide,
150pm pitch

5pm bottom CH

41111111W

c Analyze time evolution of
sample by integrating simulation
along radiation path, over region
adjacent to Vanadium

Focus attention on low density
foam case

Plastic appears to compress
Vanadium in the 8-10ns
window
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0.5pm top CH

SVOI Ap ml s twr i dees "pm,
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5pm bottom CH
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Analyze time evolution of sample by
integrating simulation along radiation
path, over region adjacent to Vanadium

° Heating strongly dependent on
effective optical depth of foam

Foam g30 mg/cc: V & plastic only
heat to 40eV

Foam @3 mg/cc: V & plastic heat to
80eV by lOns and 100eV by 15ns

Impacts ionization state achieved
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0.5pm top CH
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5pm bottom CH
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11111L- .

Analyze time evolution of sample by
integrating simulation along radiation
path, over region adjacent to Vanadium

° Heating strongly dependent on
effective optical depth of foam

Foam g30 mg/cc: V & plastic only
heat to 40eV

Foam @3 mg/cc: V & plastic heat to
80eV by lOns and 100eV by 15ns

Impacts ionization state achieved

400 mm 30 mg/cc CH foam
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o Heating strongly dependent on effective optical depth of foam

• Impacts transmission profiles derived for synthetic radiography

• YT-based synthetic radiography tools allow ALEGRA data to be reduced in same framework as kinetic data:

O Foam @30 mg/cc: transmission profile broadens and deepens; late time asymmetries emerge

o Foam @3 mg/cc: transmission profile profile narrows and deepens; remains symmetric

o Conclusion: we're doing an experiment with foam, so we're doing an experiment on the foam

•
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120
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t x 10-98

Utilize electrostatic multi-species kinetic code to
study plasma transport at CHO-V/A1 interface

16 -

14 -

• Thomas-Fermi Average Atom model for ionization 10
state

• Fermi-Dirac statistics for electrons

• Temperature relaxation model for ion-ion collisions

Simulation setup: replace DT-mix with V at 90%
solid density with 10% Al doping 6

• Ions initialized at 10eV

• Electrons follow temperature profile derived from
3 mg/cc radiation hydrodynamics calculations
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Electric Field Strength [MeWm]
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-40 -20 0
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Utilize electrostatic multi-species kinetic code to study plasma
transport at CI-10-V/A1 interface
• Thomas-Fermi Average Atom model for ionization state;

Fermi-Dirac statistics for electrons
• Temperature relaxation model for ion-ion collisions
Simulation setup: V @90% solid density, 10% Al doping
• Ions initialized at 10eV

•6.72
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• Electrons temperature derived from 3 mg/cc rad hydro

Effective Charge State

1

•

fi

7.68

6.96

6.24

5.52

4.80

4.08

3.36

2.64

1.92

1.20

Electric field & electron evolution is qualitatively the same
before:

• Electrons remain confined within the Vanadium strip

• Electric fields —9x weaker c.f. heating to 200eV
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Transmission
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Synthetic Radiography for PSF=12 [pm], Window=1.0 [ns]
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Utilize electrostatic multi-species kinetic code to study plasma
transport at CHO-V/A1 interface
Thomas-Fermi Average Atom model for ionization state;
Fermi-Dirac statistics for electrons
Temperature relaxation model for ion-ion collisions

Simulation setup: V @90% solid density, 10% Al doping
Ions initialized at 10eV

14 u;
. . i
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40

•
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• Electrons temperature derived from 3 mg/cc rad hydro

Synthetic radiography:

• Transmission profile deepens and narrows prior to 8ns

• After 8ns, profile becomes shallower and widens:

Indicates electric field induced transport important at later
times
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X Position [mm]

. Utilize electrostatic multi-species kinetic code to study plasma
transport at CHO-V/Al interface
. Thomas-Fermi Average Atom model for ionization state; Fermi-

Dirac statistics for electrons

. Temperature relaxation model for ion-ion collisions
. Simulation setup: V @90% solid density, 10% Al doping
. Ions initialized at 10eV
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. Electrons temperature derived from 3 mg/cc rad hydro

. Synthetic radiography:

. Transmission profile deepens and narrows prior to 8ns

. After 8ns, profile becomes shallower and widens:

. Indicates electric field induced transport important at later time
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Utilize electrostatic multi-species kinetic code to study
plasma transport at CHO-V/A1 interface
o Thomas-Fermi Average Atom model for ionization state;

Fermi-Dirac statistics for electrons
o Temperature relaxation model for ion-ion collisions

° Simulation setup: V @90% solid density, 10% Al doping
• Ions initialized at 10eV
o Electrons temperature derived from 3 mg/cc rad hydro
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° Synthetic radiography:

o Re-run calculation without electric field

o Transmission profile deepens and narrows prior to 1 Ons

After lOns, profile becomes shallower but remains
narrow:

Late time behavior crucial for diagnosing diffusion



35 Conclusions & References
Z-Machine provides a unique capability to study plasma transport

. Initial series of experiments have examined diffusion of a
Vanadium/Plastic interface

. Radiographs from these experiments become narrower and deeper
later in the experiment

. Modeling is challenging: broad range of timescales and
temperatures

Idealized kinetic models:

. Heating the interface (200eV over lOns, electrons in equilibrium
with radiation) leads to generation of electric fields that penetrate
into bulk material

• Significant dependence on collision model (momentum vs.
temperature relaxation)

• Synthetic radiography tools indicate that kinetic models of
interface are associated with transmission profiles that become
broader and shallower as material heats

References:
• VPBGK code available at: https://github.com/lanl/Multi-BGK

• Stanton & Murillo (2016): 10.1103/PhysRevE.93.043203
• Haack et al. (2017a): 10.1007/s10955-017-1824-9
• Haack et al. (2017b): 10.1103/PhysRevE.96.063310

Radiation hydrodynamic calculations:

o Heating of Vanadium/Plastic interface is strongly influenced by
the effective optical depth of the foam

• Foam @experimental densities results causes
Vanadium/Plastic to heat to —40eV, exhibits strong turbulent
mixing

O Foam @l0x /ower densities results in Vanadium/Plastic to heat
to —100eV, exhibits reduced levels of turbulent mix

• Synthetic radiography for low density foam case is qualitatively
consistent with experimental data

Kinetic models w/radiation hydrodynamic-derived heating:

• Qualitative match to experimental behavior; indicates improved
understanding of foam opacity is critical.

• Influence of electric fields emerges at late times (>10ns): careful
control of experimental radiography timing is critical.

• Differences in diffusive transport models can, in principle, be
distinguished with current experimental capabilities.

o Need to quantify uncertainties in opacity models, ionization
states, transport models in order make quantitative comparisons
to experiment


