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Compressive hyperspectral imaging reduces measurem&nte-

m Compressive sensing reduces the number of bands from the
full spectra.

m Less measurements results in faster acquisition time.
m Reconstruction requires heavy computation.

m Can neural networks reduce computation time for
reconstruction?

m Can neural networks improve classification accuracy of
spectra?

m Can neural networks classify the raw, compressed spectra?
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Qutline: How to reconstruct and classify compressive
hyperspectral images?

1. Hyperspectral imaging based on compressive sensing
2. Task 1: Reconstruction of hyperspectral images from
compressive sensing data

3. Task 2: Classification of hyperspectral images from
compressive sensing data

3
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Hyperspectral imaging based on compressive sensing
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Hyperspectral imager based on compressive sensing

m Measure the spectra of incoming light using a spatial light
modulator (SLM) before the focal plane array.

m The transmission of the SLM can be controlled by applying
different voltages.

m Each measurement corresponds to a different transmission

profile of the SLM.
Filtered

™~ Light

Broadband Light

. Detector Array
Filter Arra 5
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Simulate transmission of Fabry Perot resonators wik.

Mirror spacing: 2.00 um Mirror spacing: 3.89 um
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D. J. Lee and E. A. Shields, “Compressive hyperspectral imaging using total variation minimization” SPIE (2018). 6
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Compress measurements using Fabry Perot resonators = ==

m Each measurement corresponds to a different transmission
profile.

m Take less measurements than the number of bands.

Y
N x 1
Mx1 — sparse
measurements signal
K
nonzero
K % M << entiies
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Sample mirror spacing of Fabry Perot resonators

Fabry-Perot Transmission
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Task 1: Reconstruction of hyperspectral images
from compressive sensing data

Deep neural networks for compressive hyperspectral imaging Dennis



Multi-layer perceptrons reconstruct hyperspectral images=

m The output is the full hyperspectral image with 220 bands.

m The inputs are the compressed hyperspectral images with the
number of bands varying from 160, 80, 40, 20, and 10.

m Vary the number of layers: K =1, 2, 4, 7, 14.

Measured Input K hidden Output Reconstructed
frame layer layers layer video sequence
< > w, h t
I L * wy X hy, x
e bveivi
wam 1
Bum L S
= R ® i © Wl R |
=k HE TH ~+H
J mans T !
THHHH
wp X hp wp X hy x t
b Patch extraction T Nonlinear mapping " ‘Reconst.ruction by averagingy
of a patch to a block overlapping blocks

M. lliadis, et. al., “Deep fully-connected networks for video compressive sensing” arxiv:1603.04930v2 (2017). 10
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The Indian Pines dataset is a hyperspectral image

m Dataset consists of 145 x 145 pixels with a spatial resolution
of 20 m and a 10 nm spectral resolution over the range of
400-2500 nm.

m We use the entire 220 bands including the water absorption
region. This simulates the real application, where the entire
spectrum is modulated by a LCD.

Class labels
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Train on 2 datasets: Indian Pines and random spectra@m‘“

m Indian Pines contains 21025 spectra (145 x 145). We reserve
60% for training, 20% for validation, and 20% for testing.

m We generate random spectra from a normal distribution (unit
mean, zero variance), smoothed by a Hanning filter with
window sizes that vary from 11, 21, 31, and 41. There are
equal numbers of Indian Pines and random spectra.

m Random noise is added to the Indian Pines training data,
generated from the distribution described above.

m The training set is split 50% between Indian Pines and
random spectra.

m The random dataset and additive noise help to prevent
overfitting. Both datasets are normalized to zero mean and

unit variance.
12
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Moderate compression (160/220) => small error 3

Example Reconstructions, Input size: 160, Layers: 1

Indian Pines dataset Random dataset
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Larger compression (10/220) => larger error

Example Reconstructions, Input size: 10, Layers: 1

Indian Pines dataset Random dataset
10 10
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Crop spectra vary with input size of 10 and single Iaye@ﬁ'“
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Crops with fewer examples show higher variance 3

Corn Grass-pasture
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Higher bands have lower signal, greater error

Hay-windrowed Oats
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Stone-steel-towers has fewest examples, greatest error D&

Soybean-clean Wheat
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Overall R? shows too many layers increases error e

Standard deviation R?
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Single layer shows least overfitting

Compressed signal length
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Regularize the model to further reduce overfitting e

m With a single layer, the Indian Pines reconstruction seemed to
show the least overfitting.

m The random dataset serves as a measure of overfitting.

m Can the training dataset be further augmented beyond
random spectra?

m How can the multilayer perceptron be further regularized?
Some ideas are to add drpout, noise augmentation.

21
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Task 2: Classification of hyperspectral images
from compressive sensing measurements
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Evaluate classifier performance on compressed inputs

m Compress the full spectra (220 bands) to 160, 80, 40, 20, and
10 bands.

m Apply a classifier (SVM, KNN, Neural networks) to the
reconstructed spectra (220 bands).

m Evaluate classifier performance on compressed spectra (160,
80, 40, 20, 10 bands)..

m Evaluate reconstructed spectra (220 bands) as initial
compressed input varies (160, 80, 40, 20, 10 bands).

23
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3D convolutions extract spatial and spectral features @k

m Two convolutional layers have kernels of size 3 x 3 x 7 and 3 x
3x 3.

m Previous approaches have applied principle components
analysis to the spectral dimension independently of the spatial
dimension.

F1
. »
Fully
3D convolution 3D convolution ommed F cstouse: J
operation opemuon layer
Kemels B
2@k} x K} x K} .mk, xK xK; 4 d
& &
T o Feature 1 Feature 2 Feature 3 Category

MXNXL

Y. Li, et. al., “Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network”
Remote Sens. (2017). 24
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Extract multiscale spatial and spectral features

Input Input:7 =7 xBand
-

Convl
ReLU
m Evaluate a multi-scale 3D deep i T s e
convolutional neural network on e
RelLU
compressed vs. reconstructed
sp ectra. Conv3_1 Conv3 2 Conv3_3 Conv3_4
. . Sus
m Convolutions occur in 3D across ReLU
the spatial and spectral a,f.v,,
. % ReLU
dimensions. 1
: . Pooling
m The kernel size varies along the Drope
spectral dimension (1, 3, 5, 11). Fully
Connected

Output Output: Label

M. He, et. al., “Multi-scale 3D deep convolutional neural network for hyperspectral image classification” ICIP
(2017).
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Recurrent networks characterize spectral correlation .

m Gated recurrent units predict bands of each hyperspectral
pixel.

m Model accounts for spectral but not spatial correlations.

Hyperspectral Image

Classification Map

—>I—>I\

B input Layer [ Recurrent Layer + Batch Normalization + PRetanh [l Fully Connected Layer [l Softmax Layer

L. Mou, et. al., “Deep recurrent neural networks for hyperspectral image classification” |IEEE Trans. Geoscience
and Remote Sens. (2017). 26
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Recurrent networks performs best on compressed mpu@“’"”“‘“

m Metrics in paper: overall accuracy, average accuracy, kappa.
m Compressed spectra may lose spatial context.

m For SVM on compressed inputs, we use a RBF kernel with C
= 1000, v = 0.001, determined from a grid search.

m For KNN, we search over K =1, 3, 5, 10, 20. In most cases, K
= 10 performed best (eg, for compressed sizes of 10 and 160).

Overall accuracy: Compressed input Standard deviation of overall accuracy

-80 - .
00 0

© ©
So 71.01 60 5o i 0.00
n < i 9
Do 7660 7675 50 B o 1707 [ENE 0.00
wn "
¢ ¢ e
‘5_ o 5 77.92 75.16 40 ‘5_ o 14.49 0.00
€3 €3 3
So [ 6900 257 | 7065 7841 8051 30 8o

N N 0

KNN NN/He NN/Li NN/Mou SVM KNN NN/He NN/Li NN/Mou SVM

Classifier Classifier 27

e
Deep neural networks for compressive hyperspectral imaging Dennis J. Lee




How do RNNs perform on compressed inputs?

Class Accuracies, Input: Compressed, Classifier: NN/Mou
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3D CNNs perform best on the reconstructed inputs e

m Metrics in paper: overall accuracy, average accuracy, kappa.
m Reconstructed image contains meaningful spatial information.

m For SVM on compressed inputs, we use a RBF kernel with C
= 100, v = 0.01, determined from a grid search.

m For KNN, we search over K = 1, 3, 5, 10, 20. Usually, K = 5,
10 performed best (eg, for sizes 160, 10 respectively).

Overall accuracy: Reconstructed input Standard deviation of overall accuracy
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How do 3D CNNs perform on reconstructed inputs? @k

Class Accuracies, Input: Reconstructed, Classifier: NN/He
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Accuracy improves on reconstructed inputs

Overall accuracy, Classifier: SVM
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Why does accuracy improve on reconstructed spectra?— ==

m The multilayer perceptron reconstructs spectra accurately
even for high compression.

m The compressed input may lost spatial context, so 3D
convolutions may not be as effective.
m Compressive sensing can be an unstable inverse problem.

Similar spectra can look completely different in compressed
space.
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Summary: Neural networks can reconstruct and cIassif@
compressive hyperspectral images

m We have demonstrated a two step process for hyperspectral
image classification using compressive sensing measurements.

m First reconstruct the hyperspectral image from compressive
sensing measurements. We investigated varying numbers of
layers in a multiayer perceptron. We found that 1 layer
minimizes overfitting.

m Second classify the reconstructed image. We explored SVMs,
KNN, and 3 neural networks (3D CNNs, Multiscale 3D CNNs,
RNNs). We calculated accuracy using the compressed
(non-reconstructed) measurements. We found that accuracy
improves using reconstructed spectra compared to raw

compressed measurements.
33
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