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Compressive hyperspectral imaging reduces measuremefit▪ r

• Compressive sensing reduces the number of bands from the
full spectra.

• Less measurements results in faster acquisition time.

• Reconstruction requires heavy computation.

• Can neural networks reduce computation time for
reconstruction?

• Can neural networks improve classification accuracy of
spectra?

• Can neural networks classify the raw, compressed spectra?
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Outline: How to reconstruct and classify compressive C)::—
hyperspectral images?

1. Hyperspectral imaging based on compressive sensing

2. Task 1: Reconstruction of hyperspectral images from
compressive sensing data

3. Task 2: Classification of hyperspectral images from
compressive sensing data
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Hyperspectral imaging based on compressive sensing
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Hyperspectral imager based on compressive sensing

• Measure the spectra of incoming light using a spatial light
modulator (SLM) before the focal plane array.

• The transmission of the SLM can be controlled by applying
different voltages.

• Each measurement corresponds to a different transmission
profile of the SLM.
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Simulate transmission of Fabry Perot resonators
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Compress measurements using Fabry Perot resonators ffl"

• Each measurement corresponds to a different transmission
profile.

• Take less measurements than the number of bands.
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Sample mirror spacing of Fabry Perot resonators

10

on 15
E

:62 20

25

30

0.50 075 1. 00

Fabry-Perot Transrmssion

125 150

A (pm
175 2 05

L0

0.8

0.6

0.4

8

Deep neural networks for compressive hyperspectral imaging Dennis J. Lee



Task 1: Reconstruction of hyperspectral images
from compressive sensing data
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Multi-layer perceptrons reconstruct hyperspectral im

• The output is the full hyperspectral image with 220 bands.

• The inputs are the compressed hyperspectral images with the
number of bands varying from 160, 80, 40, 20, and 10.

• Vary the number of layers: K = 1, 2, 4, 7, 14.
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The Indian Pines dataset is a hyperspectral image

• Dataset consists of 145 x 145 pixels with a spatial resolution
of 20 m and a 10 nm spectral resolution over the range of

400-2500 nm.

• We use the entire 220 bands including the water absorption
region. This simulates the real application, where the entire

spectrum is modulated by a LCD.
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Train on 2 datasets: Indian Pines and random spectra
(iral

• Indian Pines contains 21025 spectra (145 x 145). We reserve

60% for training, 20% for validation, and 20% for testing.

• We generate random spectra from a normal distribution (unit

mean, zero variance), smoothed by a Hanning filter with

window sizes that vary from 11, 21, 31, and 41. There are

equal numbers of Indian Pines and random spectra.

• Random noise is added to the Indian Pines training data,
generated from the distribution described above.

• The training set is split 50% between Indian Pines and

random spectra.

• The random dataset and additive noise help to prevent

overfitting. Both datasets are normalized to zero mean and
unit variance.
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Moderate compression (160/220) => small error
Example Reconstructions, input size: 160, Layers: 1
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Larger compression (10/220) => larger error
Example Reconstructions, input size: 10, Layers: 1
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Crop spectra vary with input size of 10 and single layer-
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Crops with fewer examples show higher variance
Corn Grass-pasture
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Higher bands have lower signal, greater error
Hay-windrowed Oats
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Stone-steel-towers has fewest examples, greatest error
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Overall R2 shows too many layers increases error
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Single layer shows least overfitting

Average R2 - Indian Pines dataset
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Regularize the model to further reduce overfitting

• With a single layer, the Indian Pines reconstruction seemed to
show the least overfitting.

• The random dataset serves as a measure of overfitting.

• Can the training dataset be further augmented beyond
random spectra?

• How can the multilayer perceptron be further regularized?
Some ideas are to add drpout, noise augmentation.

Sande
National
Laboratmes
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Task 2: Classification of hyperspectral images
from compressive sensing measurements
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Evaluate classifier performance on compressed inputs

■ Compress the full spectra (220 bands) to 160, 80, 40, 20, and
10 bands.

■ Apply a classifier (SVM, KNN, Neural networks) to the
reconstructed spectra (220 bands).

■ Evaluate classifier performance on compressed spectra (160,

80, 40, 20, 10 bands)..

■ Evaluate reconstructed spectra (220 bands) as initial
compressed input varies (160, 80, 40, 20, 10 bands).

23
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3D convolutions extract spatial and spectral features a:4-

• Two convolutional layers have kernels of size 3 x 3 x 7 and 3 x

3 x 3.

• Previous approaches have applied principle components

analysis to the spectral dimension independently of the spatial
dimension.
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Y. Li, et. al., "Spectrakspatial classification of hyperspectral imagery with 3D convolutional neural network"
Remote Sens. (2017). 24

Deep neural networks for compressive hyperspectral imaging Dennis J. Lee



Extract multiscale spatial and spectral features

• Evaluate a multi-scale 3D deep
convolutional neural network on

compressed vs. reconstructed
spectra.

• Convolutions occur in 3D across
the spatial and spectral

dimensions.

• The kernel size varies along the
spectral dimension (1, 3, 5, 11).

M. He, et
(2017).
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Recurrent networks characterize spectral correlation

• Gated recurrent units predict bands of each hyperspectral
pixel.

• Model accounts for spectral but not spatial correlations.

Hyperspcctral Imagc

Xk
Xh r-I•1— --.-0-0-•

 •
•

•

:—
•_

IEEE

—
•

"

•—

1-17
li
i_...

 1—ri
 P'"'-1,--1

1--,,,..

.••

p -1,... h

Cit. Tication Map

Input Layer Rmurrent Layer Batch Normalization -I PRetanh Fully Connected Layer Solimax Lap,

L. Mou, et. al., "Deep recurrent neural networks for hyperspectral image classification" IEEE Trans. Geoscience
and Remote Sens. (2017).

Larb''''''":ratmes

26

Deep neural networks for compressive hyperspectral imaging Dennis J. Lee



Swap

Recurrent networks performs best on compressed inpufl"—

• Metrics in paper: overall accuracy, average accuracy, kappa.
• Compressed spectra may lose spatial context.

• For SVM on compressed inputs, we use a RBF kernel with C

= 1000, -y = 0.001, determined from a grid search.

• For KNN, we search over K = 1, 3, 5, 10, 20. In most cases, K

= 10 performed best (eg, for compressed sizes of 10 and 160).
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How do RNNs perform on compressed inputs?
Class Accuracies, input: Compressed, Classifier: NN/Mou
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3D CNNs perform best on the reconstructed inputs ra.

• Metrics in paper: overall accuracy, average accuracy, kappa.

• Reconstructed image contains meaningful spatial information.

• For SVM on compressed inputs, we use a RBF kernel with C

= 100, y= 0.01, determined from a grid search.

• For KNN, we search over K = 1, 3, 5, 10, 20. Usually, K = 5,
10 performed best (eg, for sizes 160, 10 respectively).
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How do 3D CNNs perform on reconstructed inputs?

90 0

90 5

Class Accuracies, input: Reconstructed, Classifier: NN/He

ISO 111 9"

el 99.1 1:11 100.0

11111 92.9 96.6 99.4

iII 94.6 100.0

li 99.1

Gr
as
s-
pa
st
ur
e-
rn
ow
ed
 

H
a
y
-
w
i
n
d
r
o
w
e
d
 

o

Class names

80 0 99.0 96.2 11111111111 99.9 99 7 98.4
- 96

99.0 100.0 100.1192.81111 99.2 100.0 98.2

- 90

98.9 100.0 83 0 1111 97.4 95 5 98.21.3..A

84

88 0 100.0 100.0 98.7 94, 96.8

78
99.8 98.8 98.6 99.6 96.3

72

So
yb

ea
n-

mi
nt

il
l 

So
yb
ea
n-
cl
ea
n 

St
on
e-
St
ee
l-
To
we
rs
 

30

Deep neural networks for compressive hyperspectral imaging Dennis J. Lee



Accuracy improves on reconstructed inputs
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Why does accuracy improve on reconstructed spectraP—

• The multilayer perceptron reconstructs spectra accurately
even for high compression.

• The compressed input may lost spatial context, so 3D
convolutions may not be as effective.

• Compressive sensing can be an unstable inverse problem.
Similar spectra can look completely different in compressed
space.
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Summary: Neural networks can reconstruct and classi
compressive hyperspectral images

■ We have demonstrated a two step process for hyperspectral
image classification using compressive sensing measurements.

■ First reconstruct the hyperspectral image from compressive
sensing measurements. We investigated varying numbers of
layers in a multiayer perceptron. We found that 1 layer
minimizes overfitting.

■ Second classify the reconstructed image. We explored SVMs,
KNN, and 3 neural networks (3D CNNs, Multiscale 3D CNNs,
RNNs). We calculated accuracy using the compressed
(non-reconstructed) measurements. We found that accuracy
improves using reconstructed spectra compared to raw
compressed measurements.
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