

Understanding correlations and energy transfer in magnetized turbulence

Brian O'Shea (MSU) with Philipp Grete (MSU)
and Kris Beckwith (Sandia)



Motivation

- Compressible, magnetized turbulence is ubiquitous in astrophysics
- Plasma turbulence is also critical to terrestrial problems of interest (e.g., dense plasma focus, plasma opening switch; see Beckwith+ 2019)
- Common problems: huge range of spatial, temporal scales

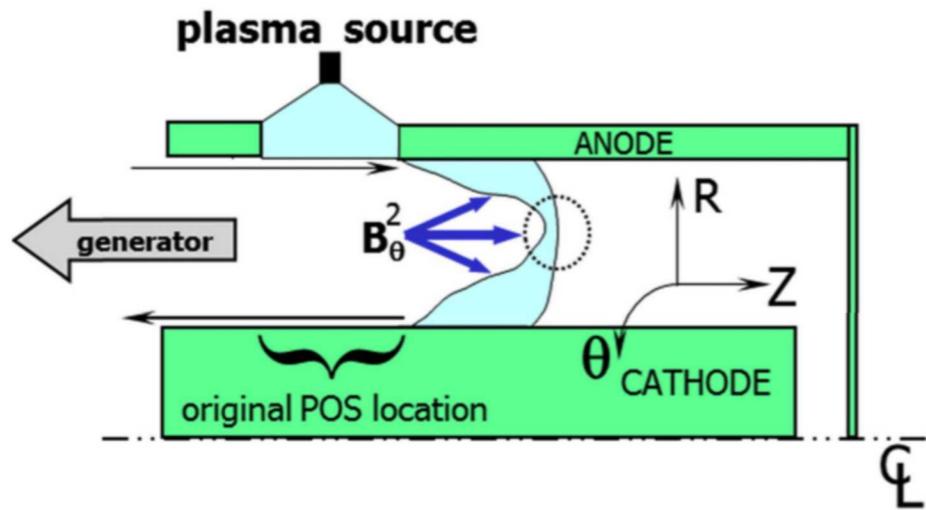


Image: Schumer et al. 2001

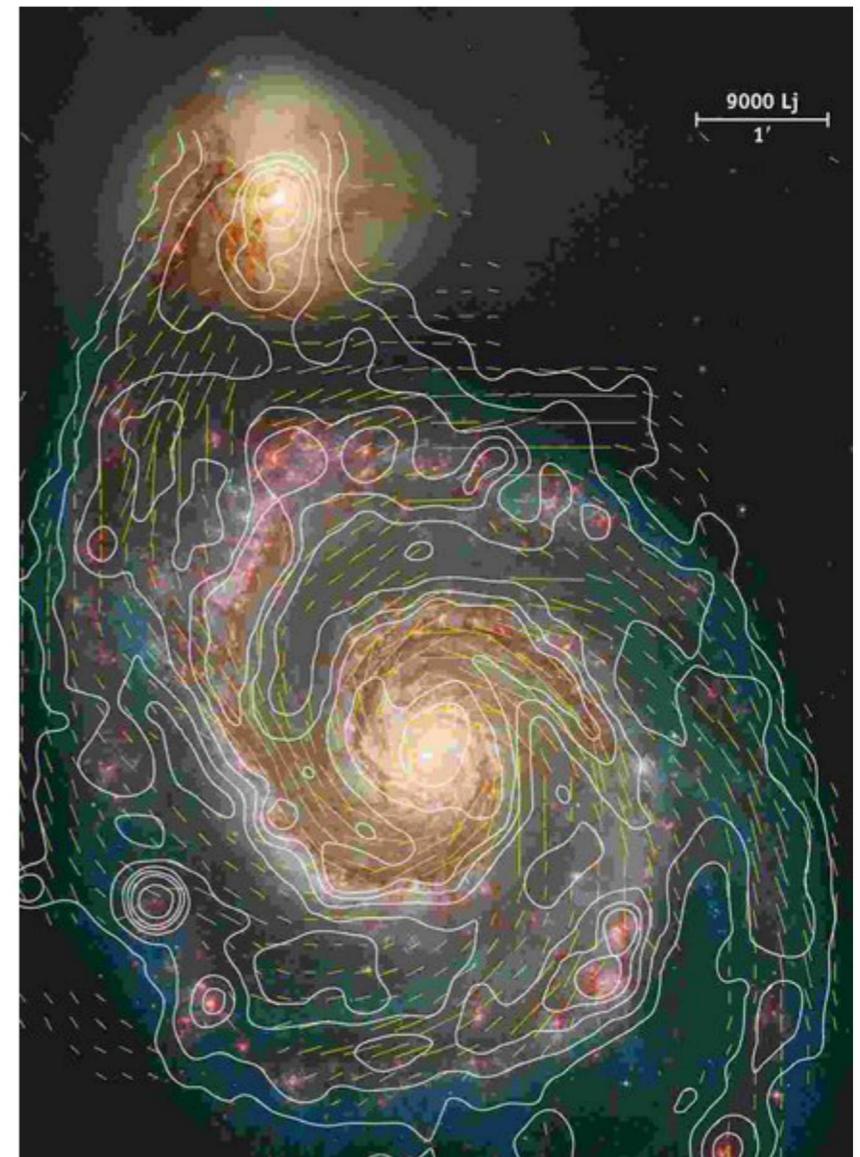
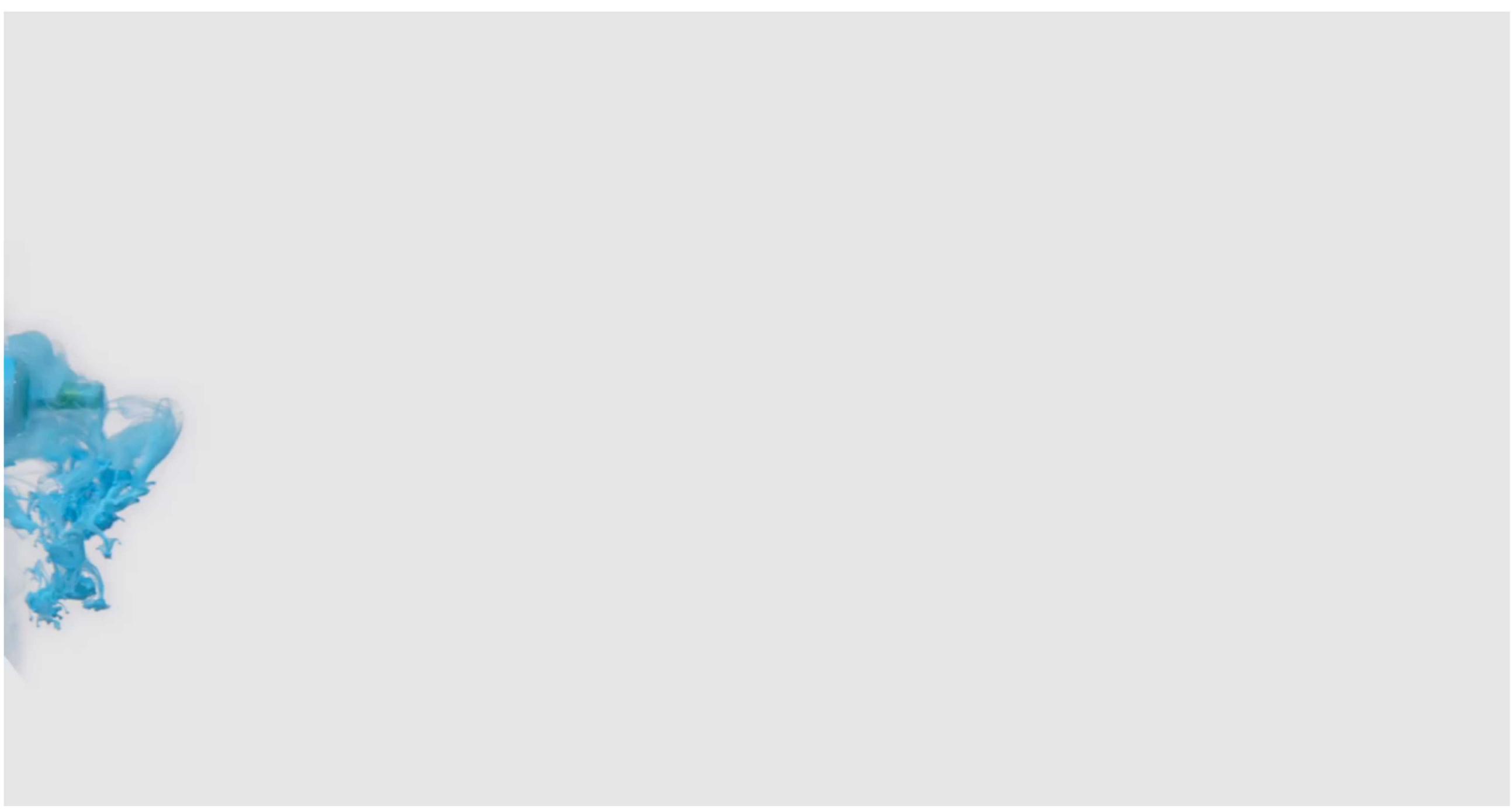


Image: MPIfR / Newcastle University

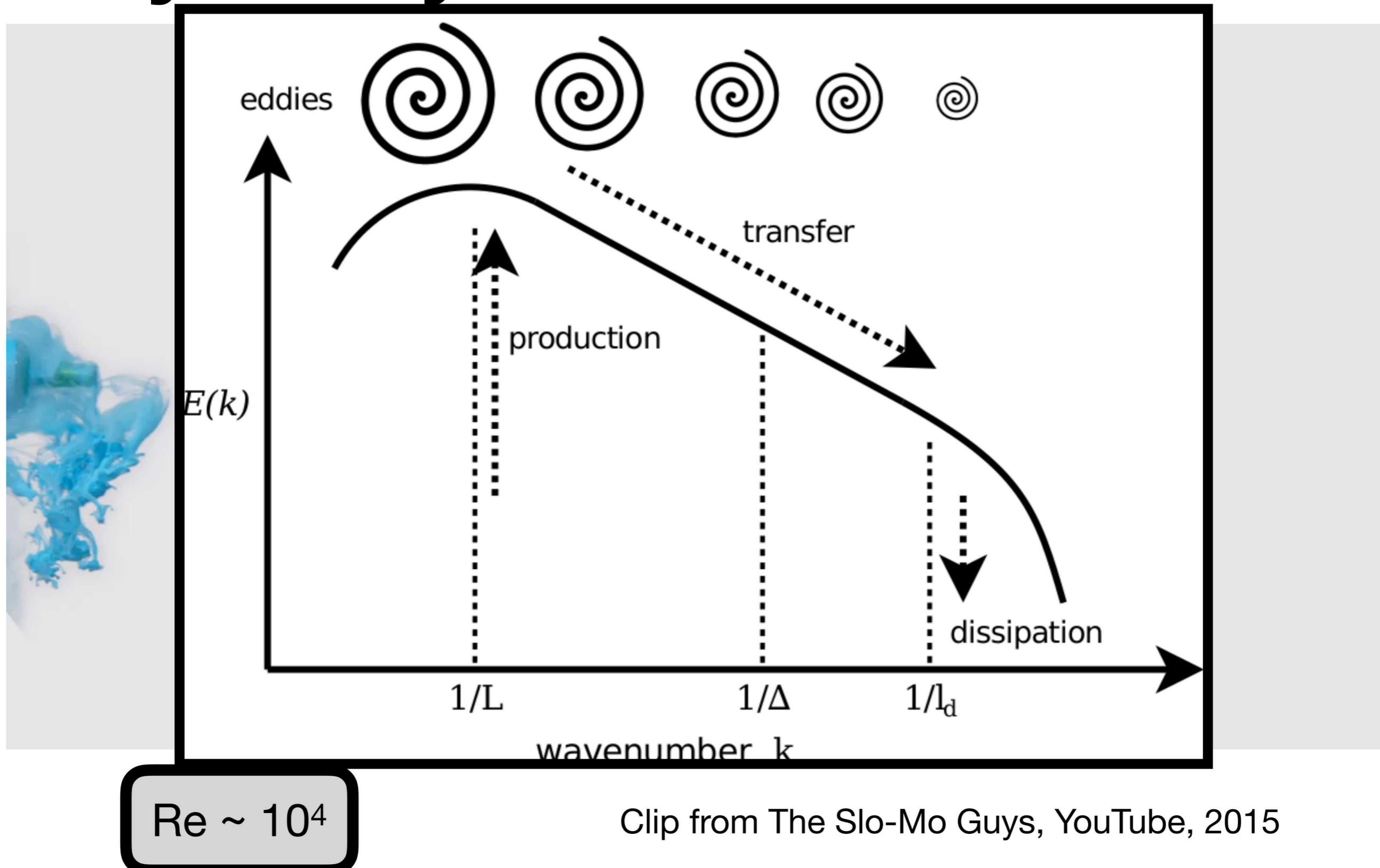
Hydrodynamic turbulence



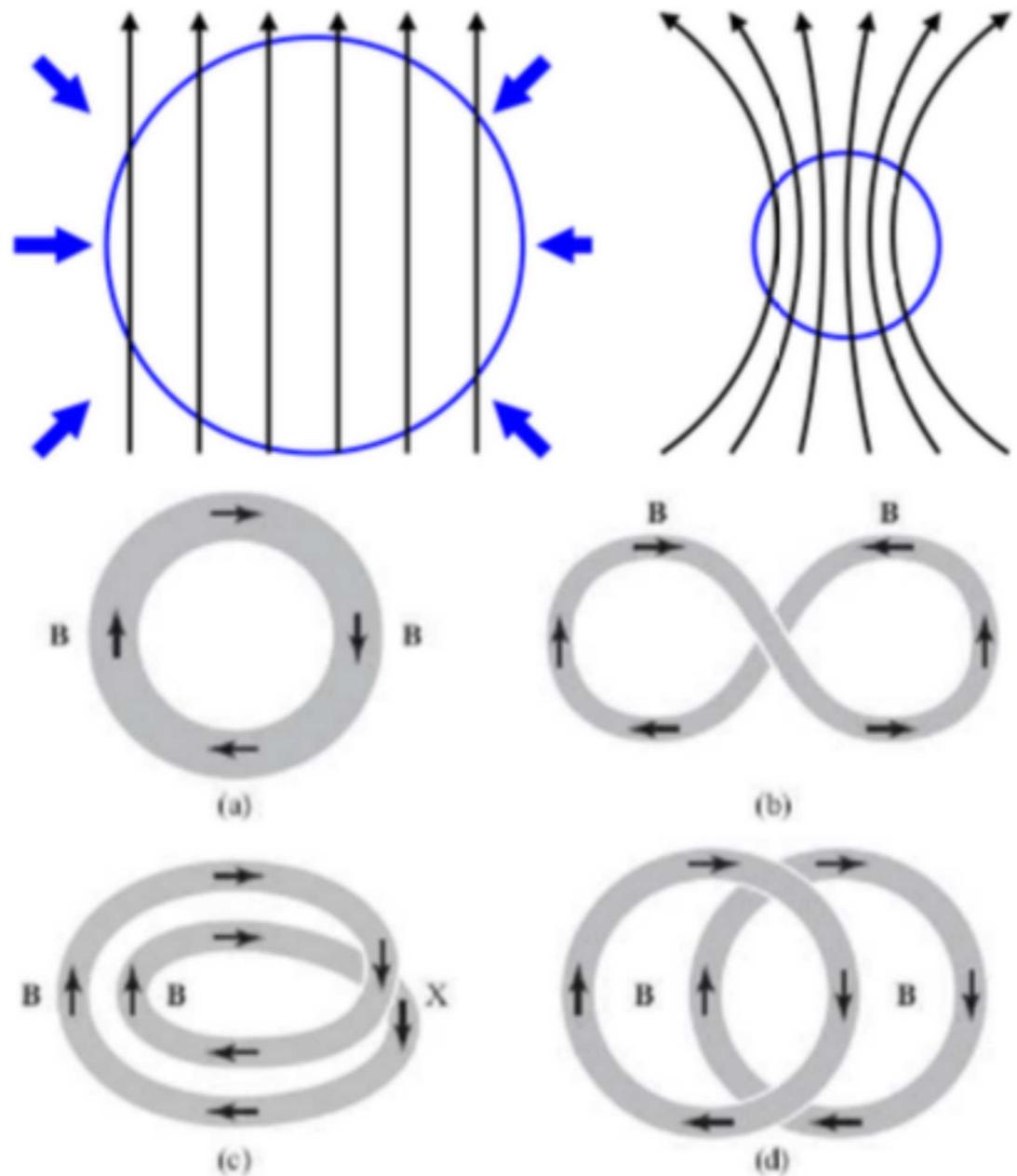
Re ~ 10⁴

Clip from The Slo-Mo Guys, YouTube, 2015

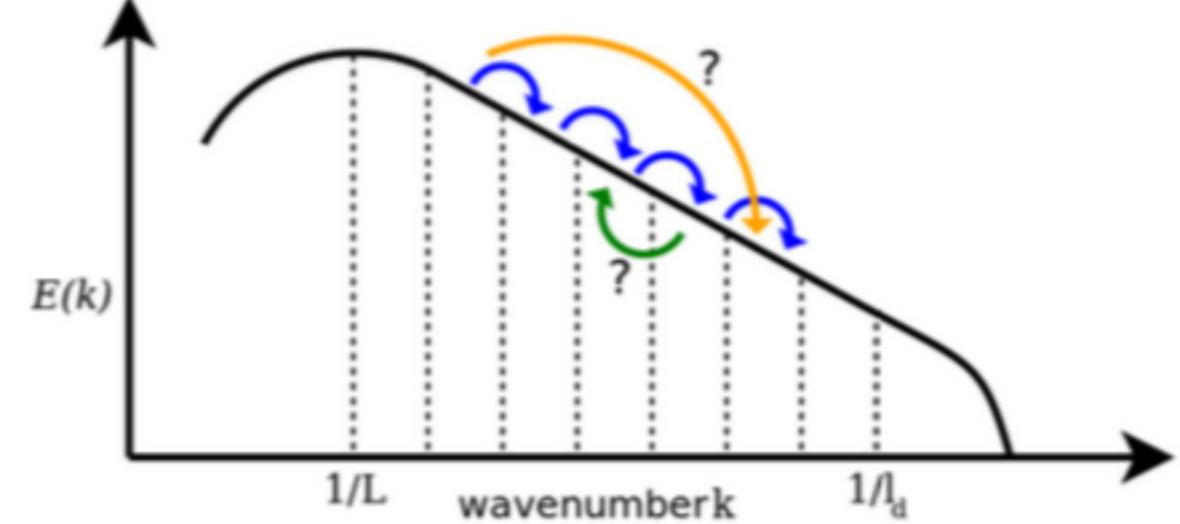
Hydrodynamic turbulence



Complexities from magnetic fields



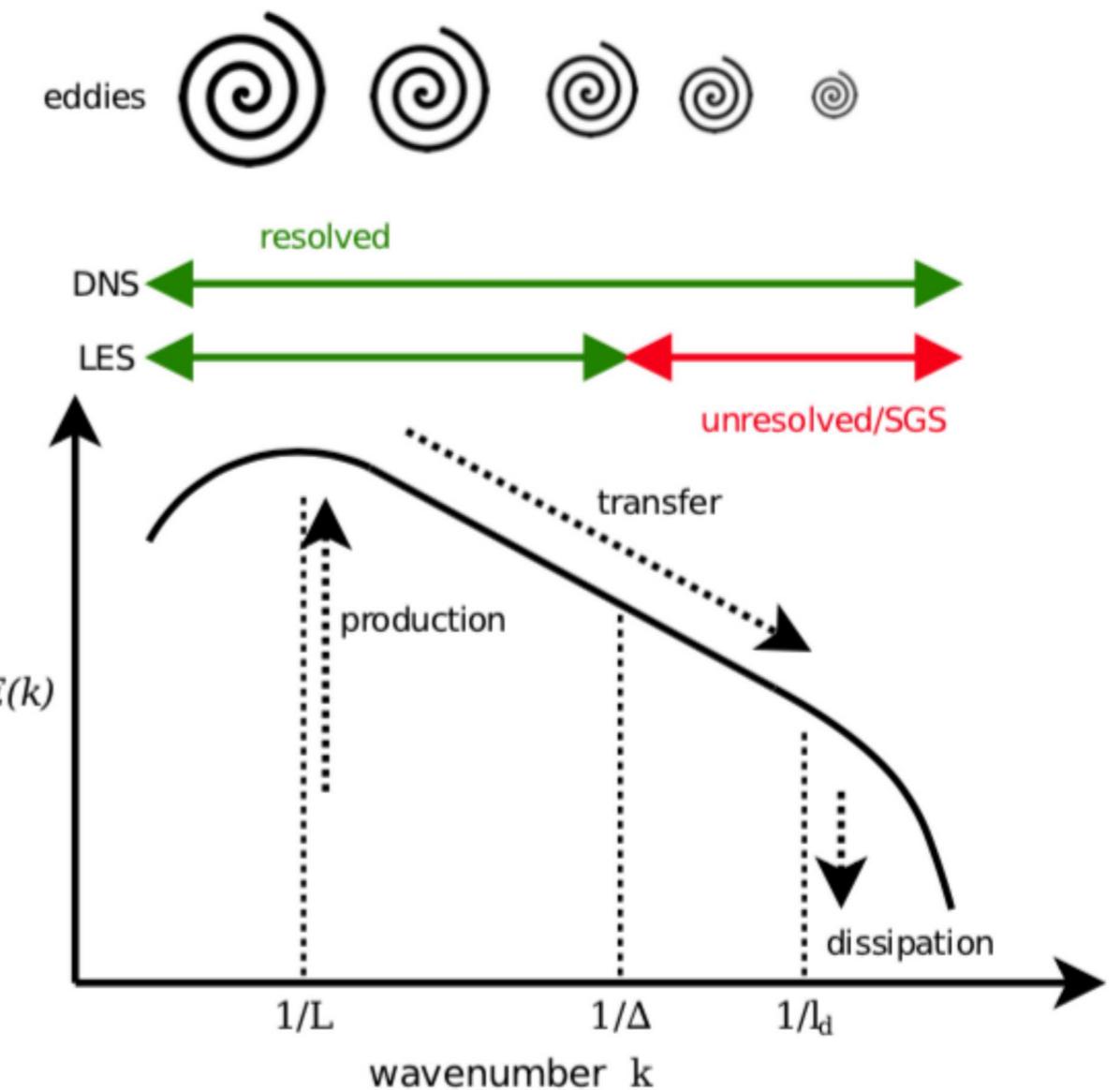
[Dynamo image credit: Vainshtein & Zel'dovich '72]



Energy transfer:
Energy cascade
Inverse transfer
Nonlocal transfer

Large eddy simulations

- Challenge: expense of full MHD simulations
- Separation of scales suggests large eddy simulations as possible solution
- Problem: MHD subgrid-scale (SGS) model
- Study energy transfer in idealized setups!



Energy budgets in incompressible MHD

$$E_u(K) = \sum_Q \int - \underbrace{\mathbf{w}^K \cdot (\mathbf{u} \cdot \nabla) \mathbf{w}^Q}_{\text{advection (kinetic cascade)}}$$

$$+ \underbrace{\mathbf{w}^K \cdot (\mathbf{v}_A \cdot \nabla) \mathbf{B}^Q}_{\text{magnetic tension}} + \dots d\mathbf{x}$$

$$E_b(K) = \sum_Q \int - \underbrace{\mathbf{B}^K \cdot (\mathbf{u} \cdot \nabla) \mathbf{B}^Q}_{\text{advection (magnetic cascade)}}$$

$$+ \underbrace{\mathbf{B}^K \cdot \nabla \cdot (\mathbf{v}_A \otimes \mathbf{w}^Q)}_{\text{magnetic tension}} + \dots d\mathbf{x}$$

e.g., Verma 2004, Alexakis+ 2005

Energy budgets in **compressible** MHD

$$E_u(K) = \sum_Q \int - \underbrace{\mathbf{w}^K \cdot (\mathbf{u} \cdot \nabla) \mathbf{w}^Q}_{\text{advection (kinetic cascade)}} - \underbrace{\frac{1}{2} \mathbf{w}^K \cdot \mathbf{w}^Q \nabla \cdot \mathbf{u}}_{\text{compression}}$$

$$+ \underbrace{\mathbf{w}^K \cdot (\mathbf{v}_A \cdot \nabla) \mathbf{B}^Q}_{\text{magnetic tension}} - \underbrace{\frac{\mathbf{w}^K}{2\sqrt{\rho}} \cdot \nabla (\mathbf{B} \cdot \mathbf{B}^Q)}_{\text{magnetic pressure}} + \dots d\mathbf{x}$$

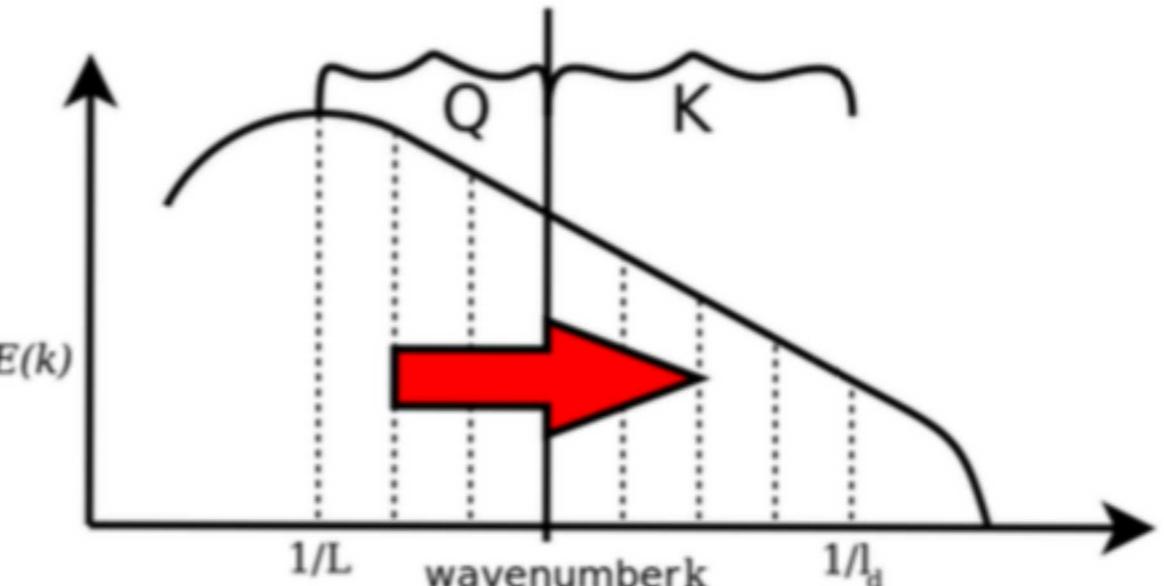
$$E_b(K) = \sum_Q \int - \underbrace{\mathbf{B}^K \cdot (\mathbf{u} \cdot \nabla) \mathbf{B}^Q}_{\text{advection (magnetic cascade)}} - \underbrace{\frac{1}{2} \mathbf{B}^K \cdot \mathbf{B}^Q \nabla \cdot \mathbf{u}}_{\text{compression}}$$

$$+ \underbrace{\mathbf{B}^K \cdot \nabla \cdot (\mathbf{v}_A \otimes \mathbf{w}^Q)}_{\text{magnetic tension}} - \underbrace{\mathbf{B}^K \cdot \mathbf{B} \nabla \cdot \left(\frac{\mathbf{w}^Q}{2\sqrt{\rho}} \right)}_{\text{magnetic pressure}} + \dots d\mathbf{x}$$

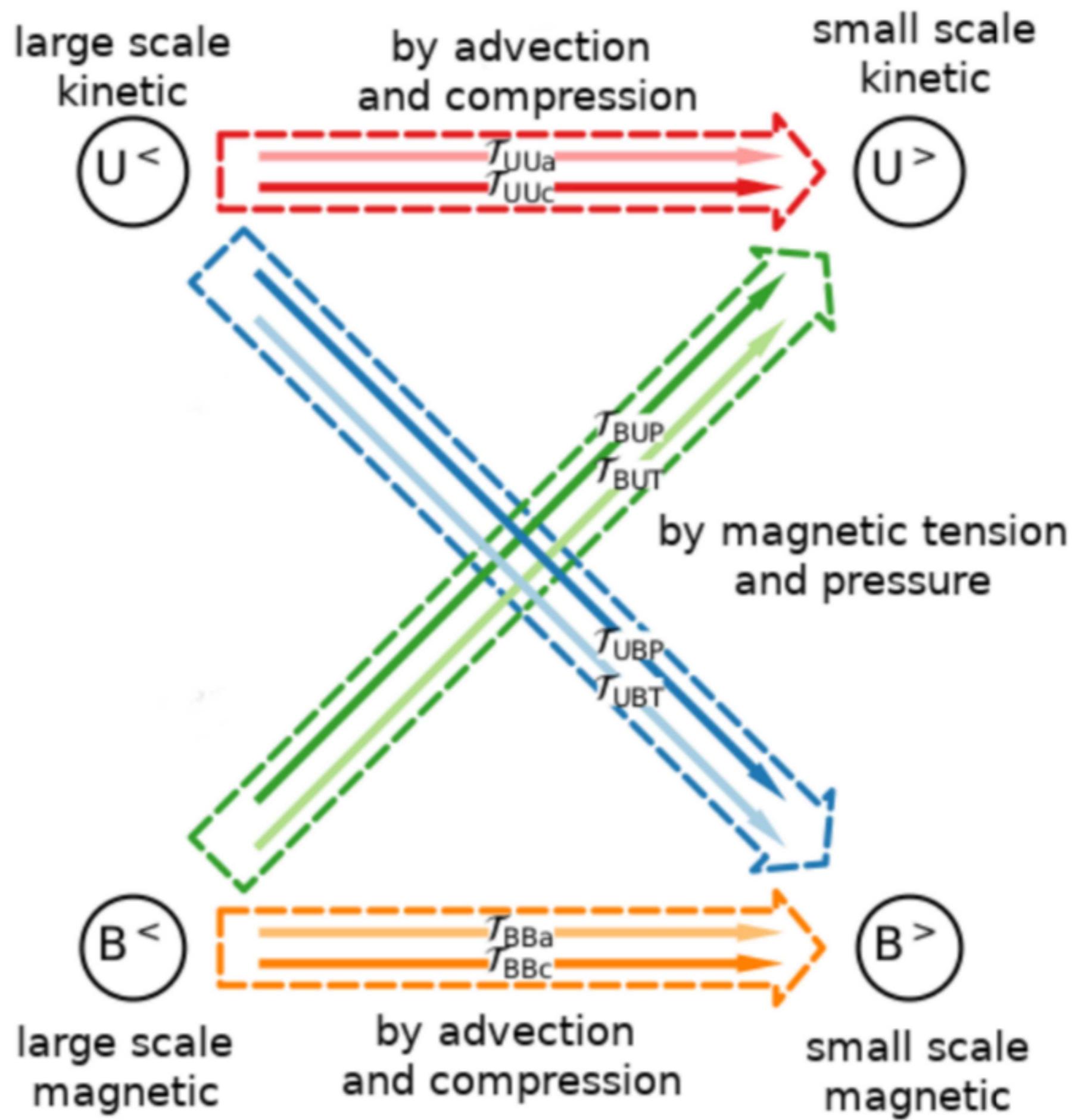
What can we learn from the energy transfer function?

Cross-scale transfer

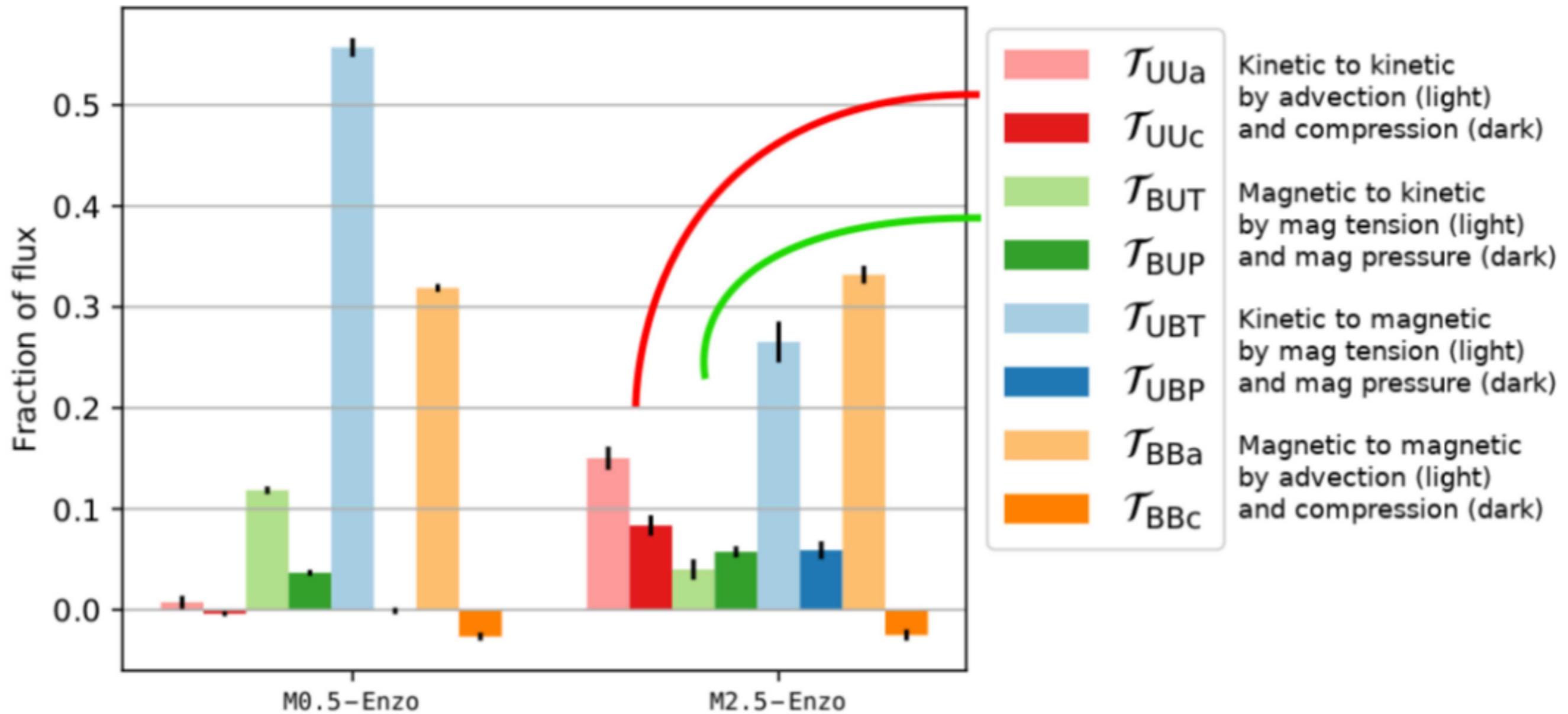
Total transfer

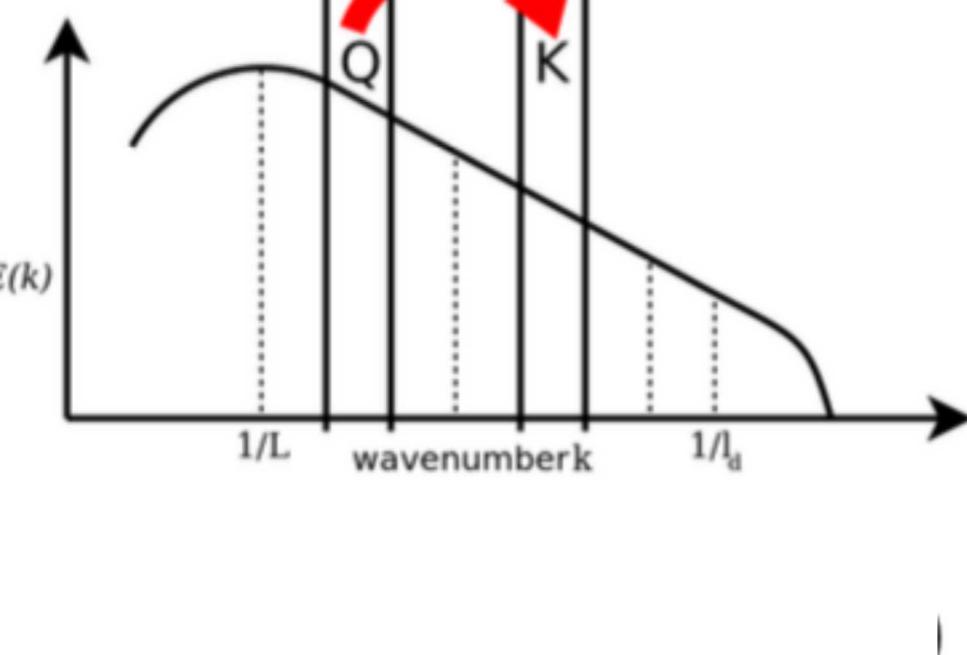
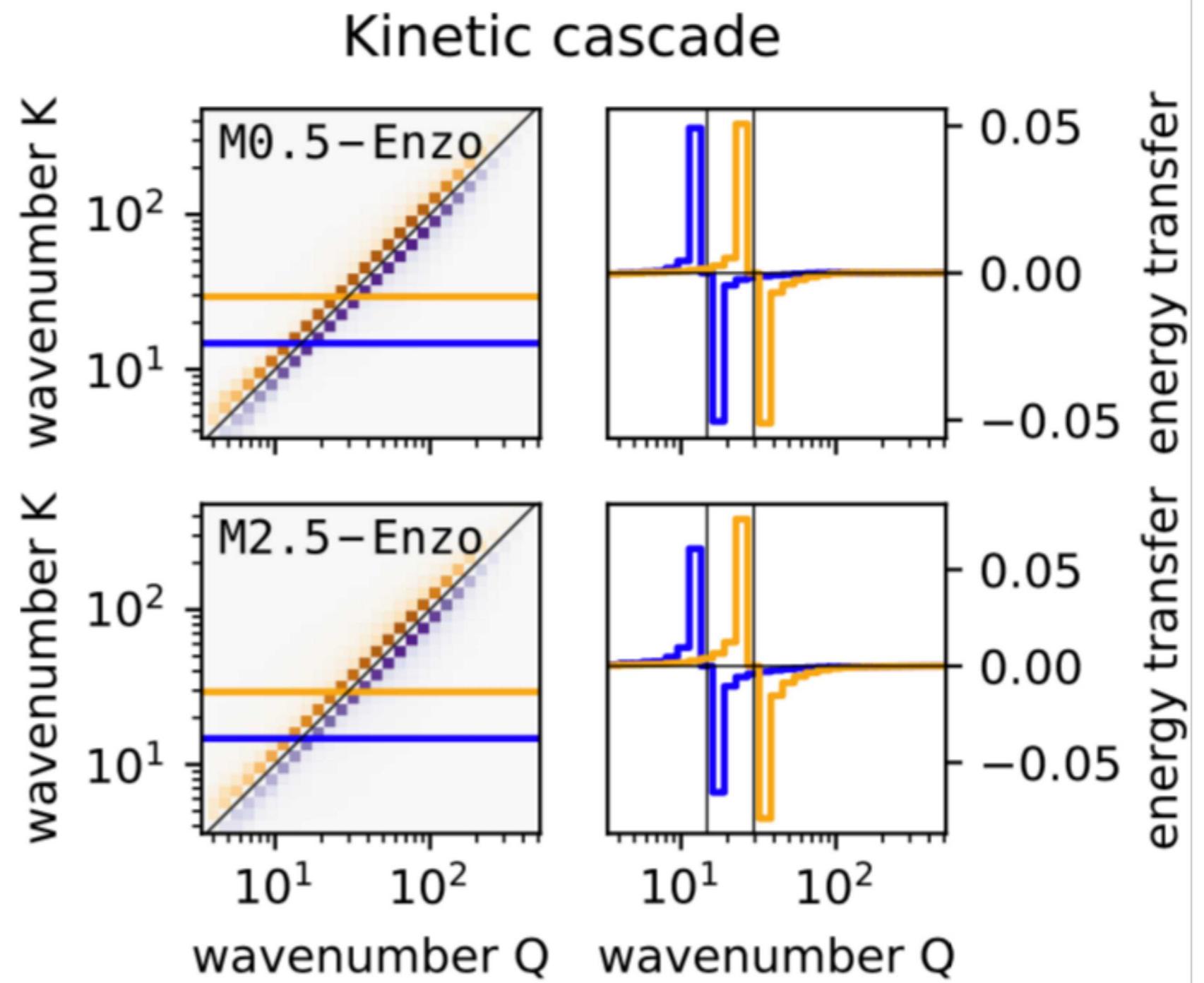


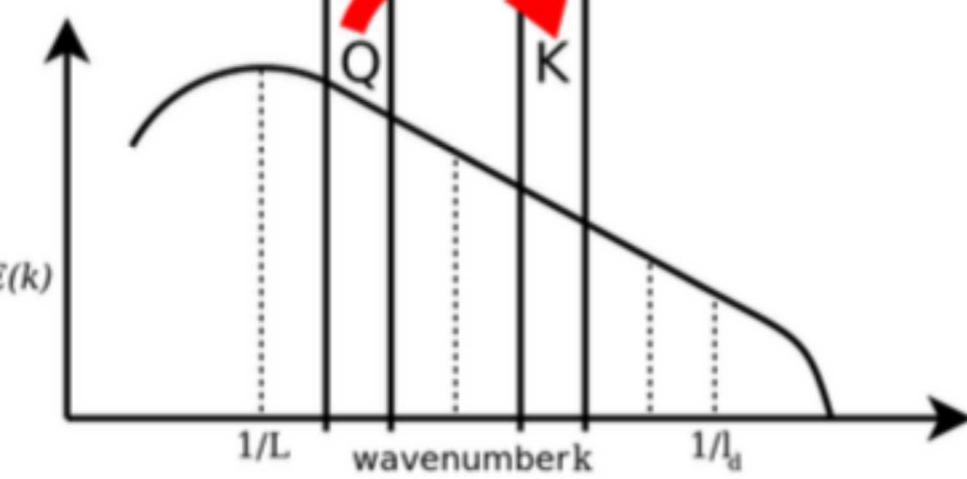
Shell-to-shell transfer



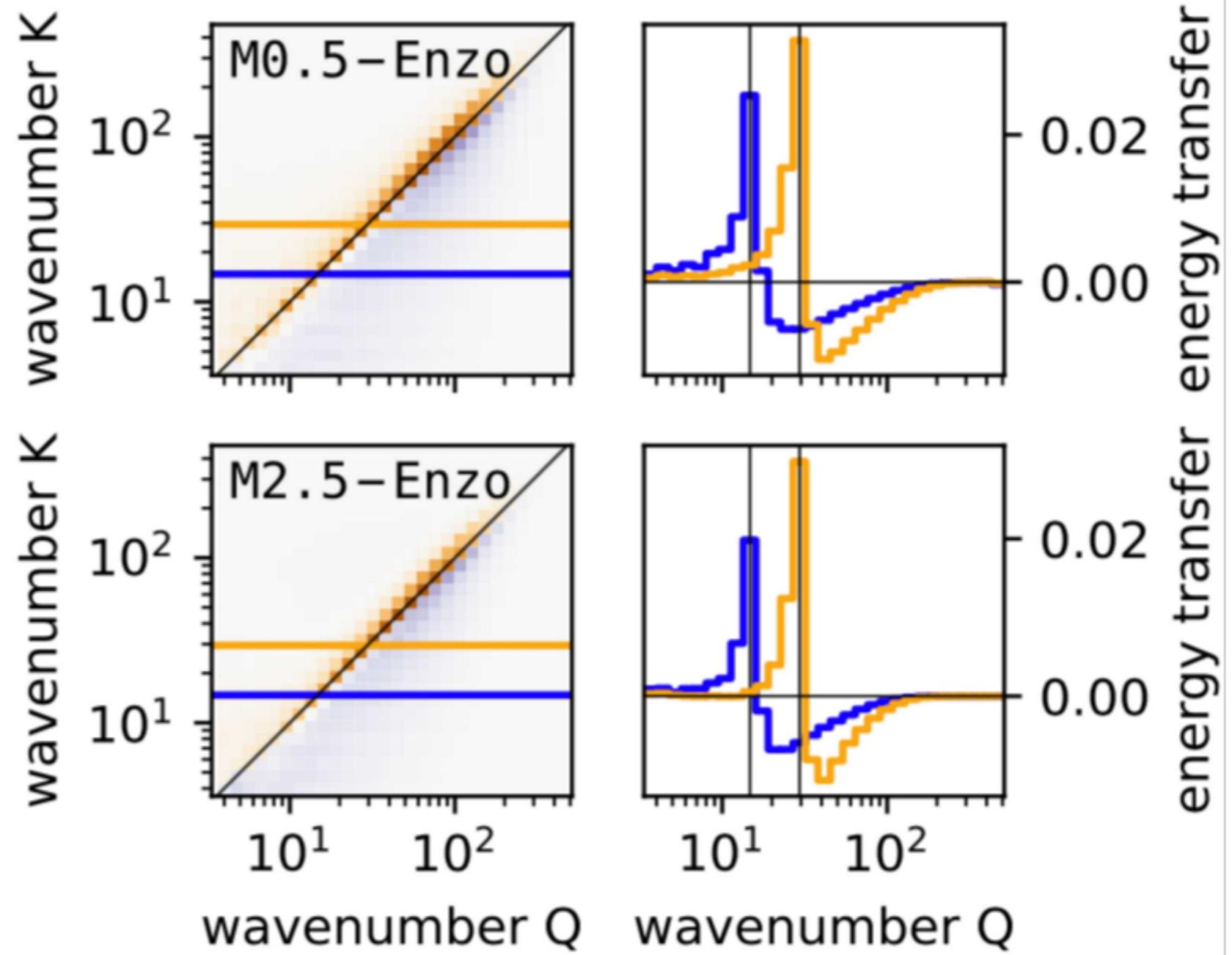
Mean cross-scale flux in the inertial range





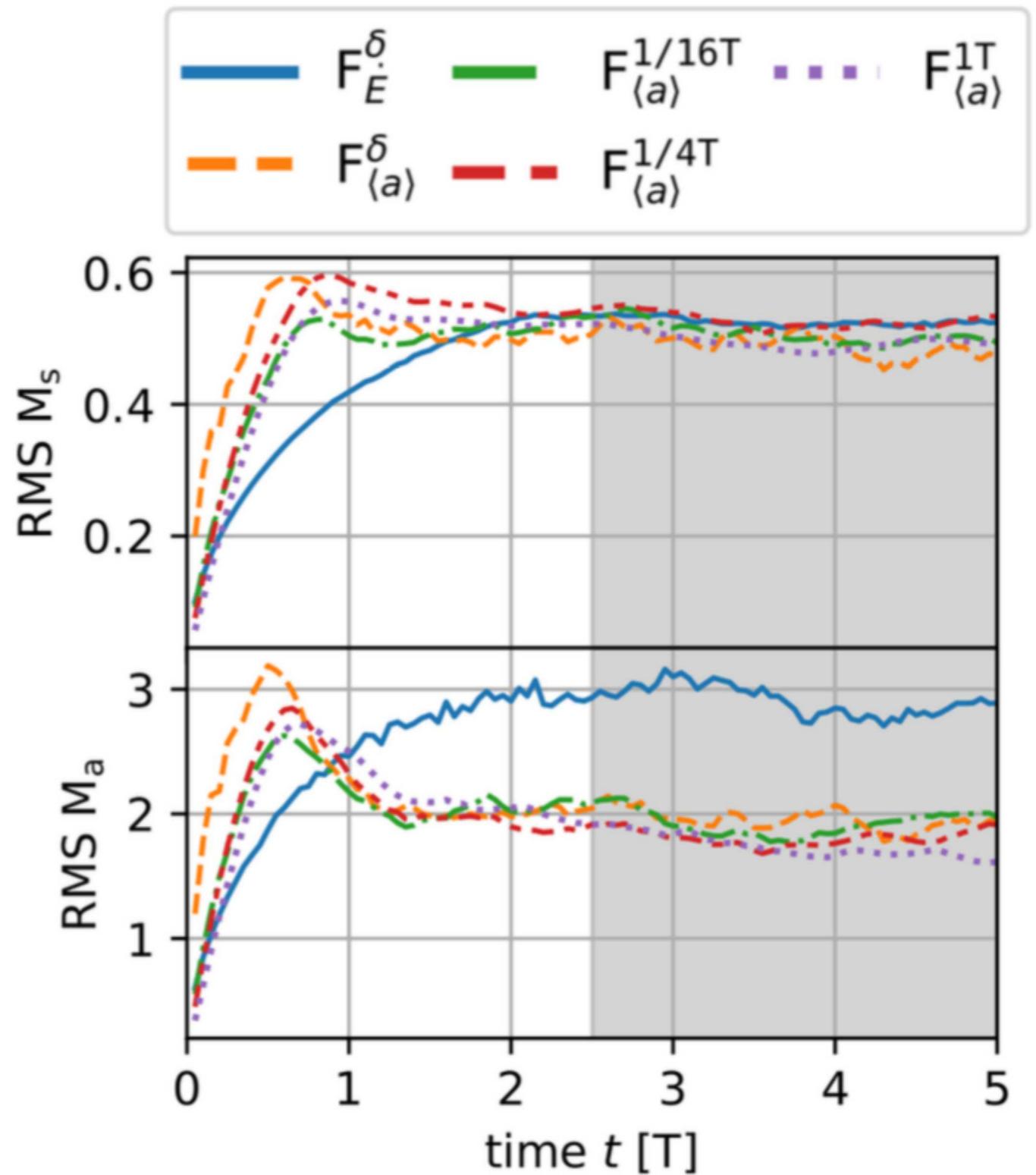


Mag. to kin. by magnetic tension

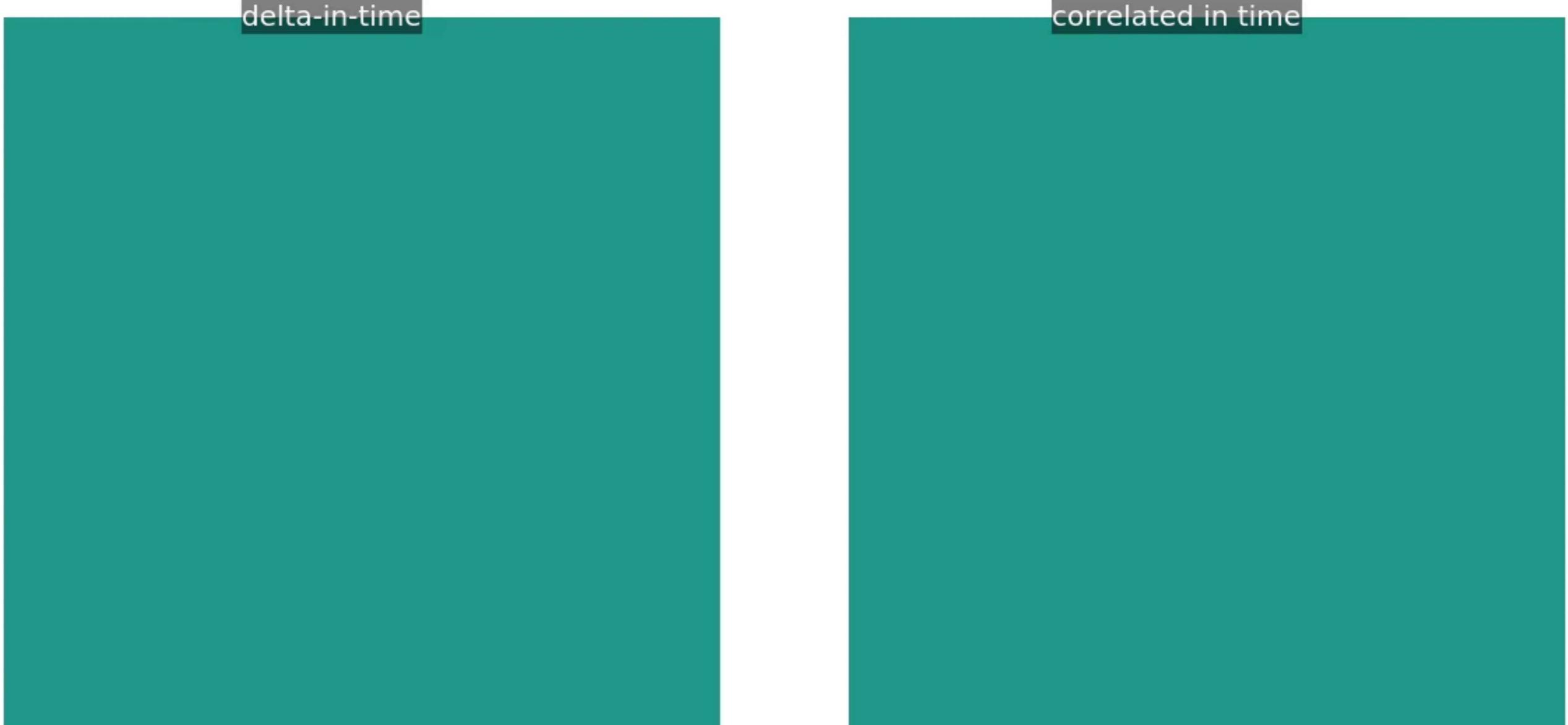


Correlations in isothermal turbulence

- Isothermal, isotropic, homogeneous MHD turbulence
- Subsonic ($M_s \sim 0.5$), super-Alfvénic
- Solenoidal driving with varying autocorrelation time and normalization.

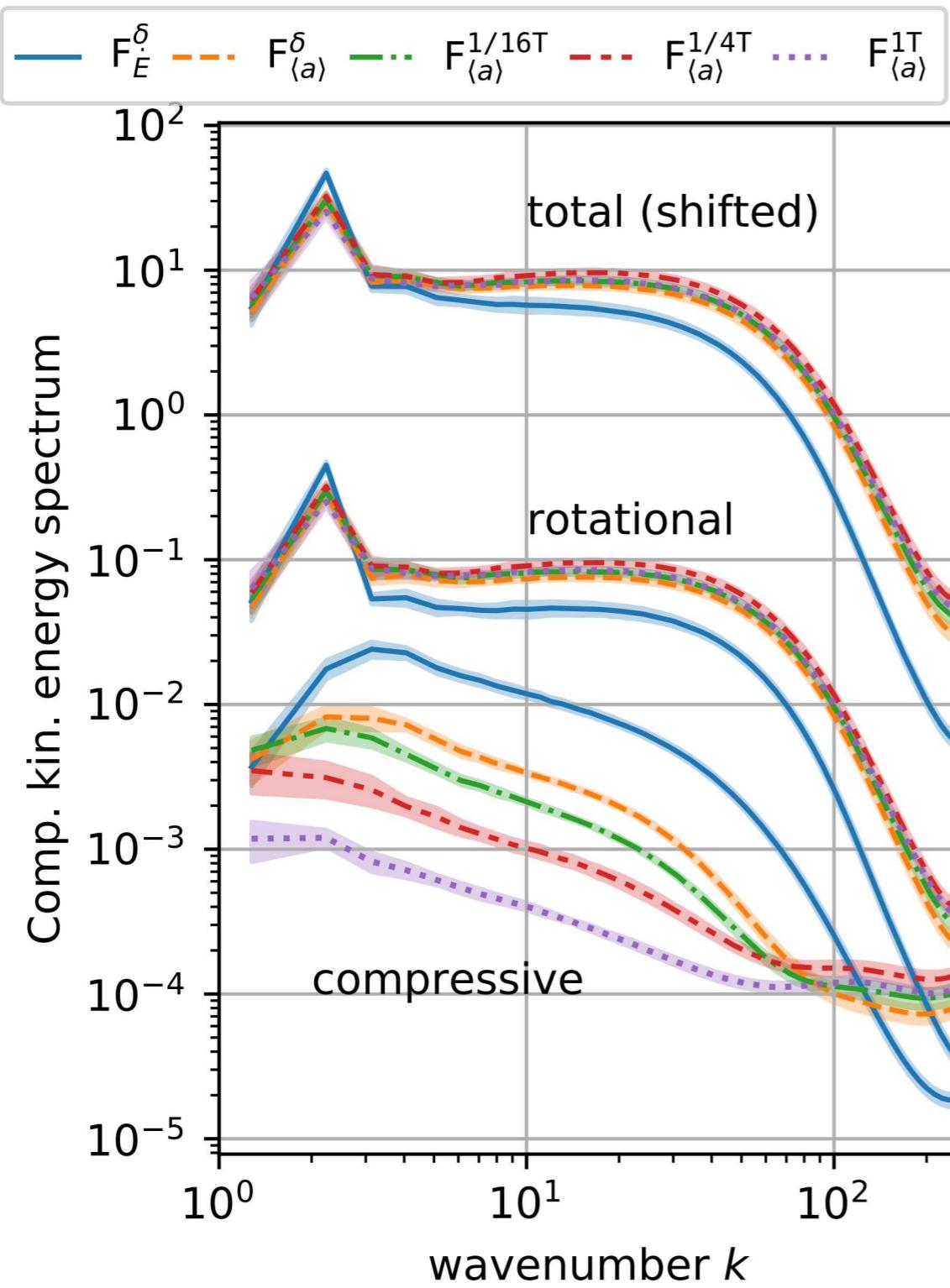
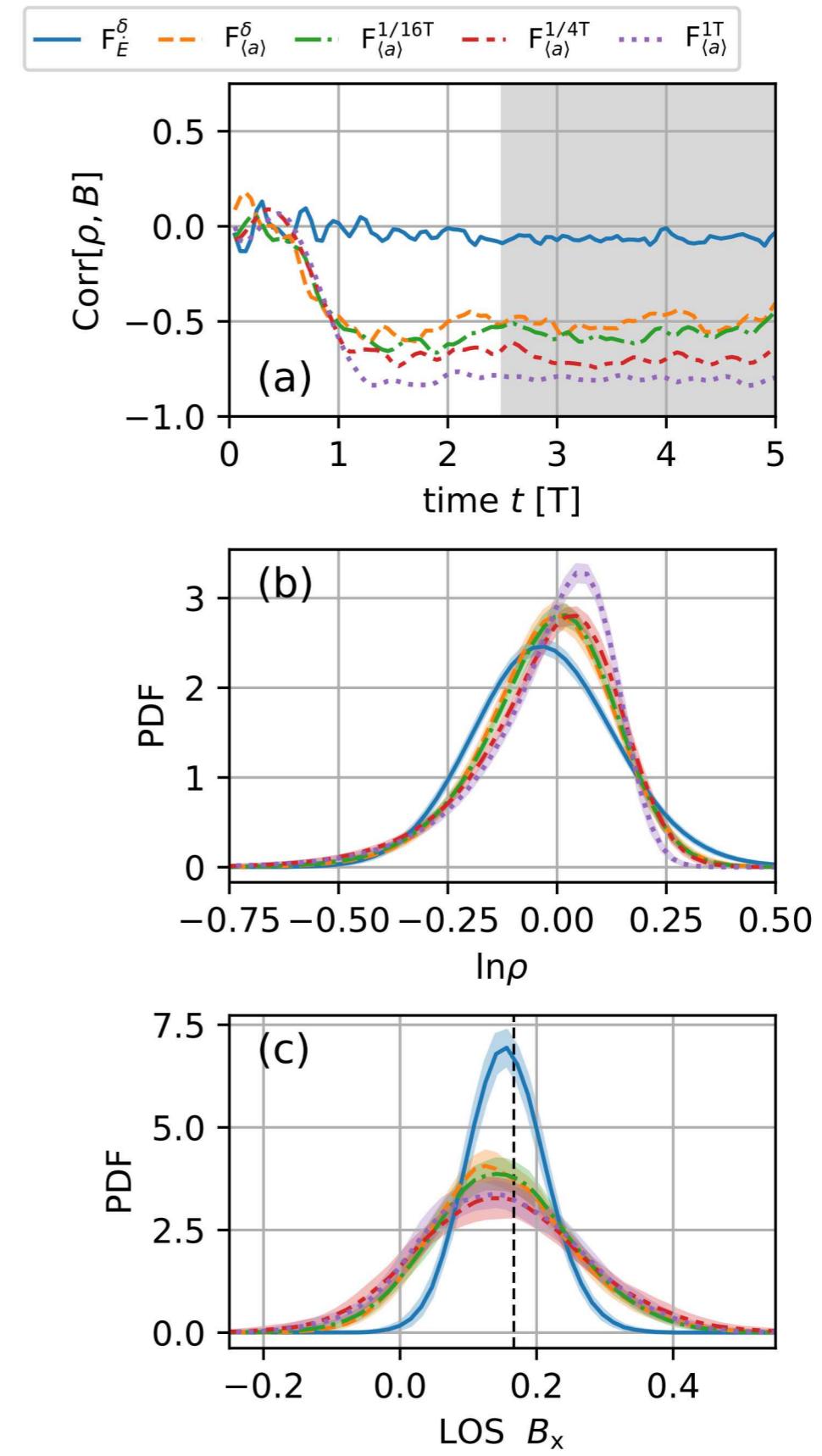


Correlations in isothermal turbulence



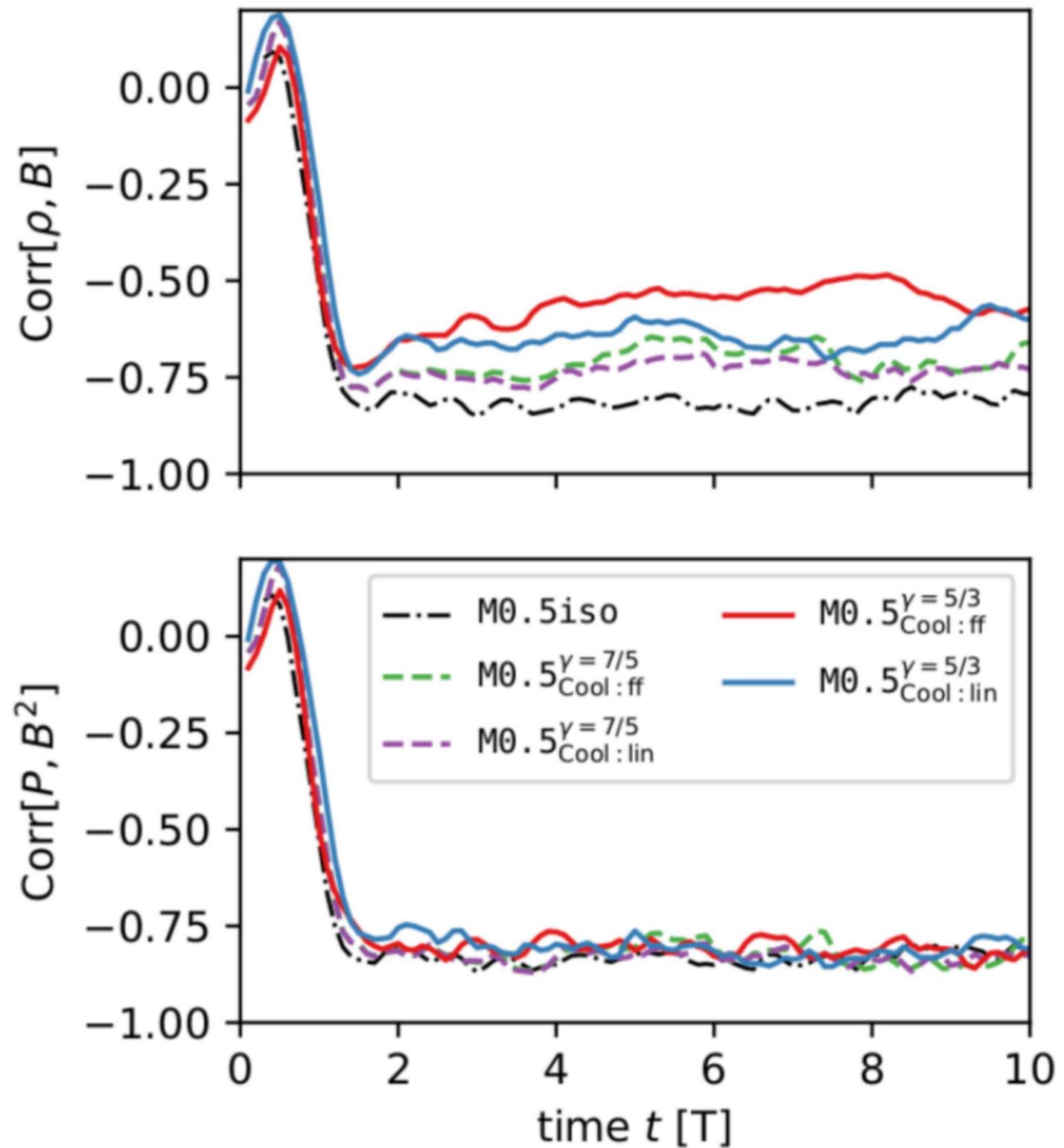
$t = .05T$

Correlations in isothermal turbulence

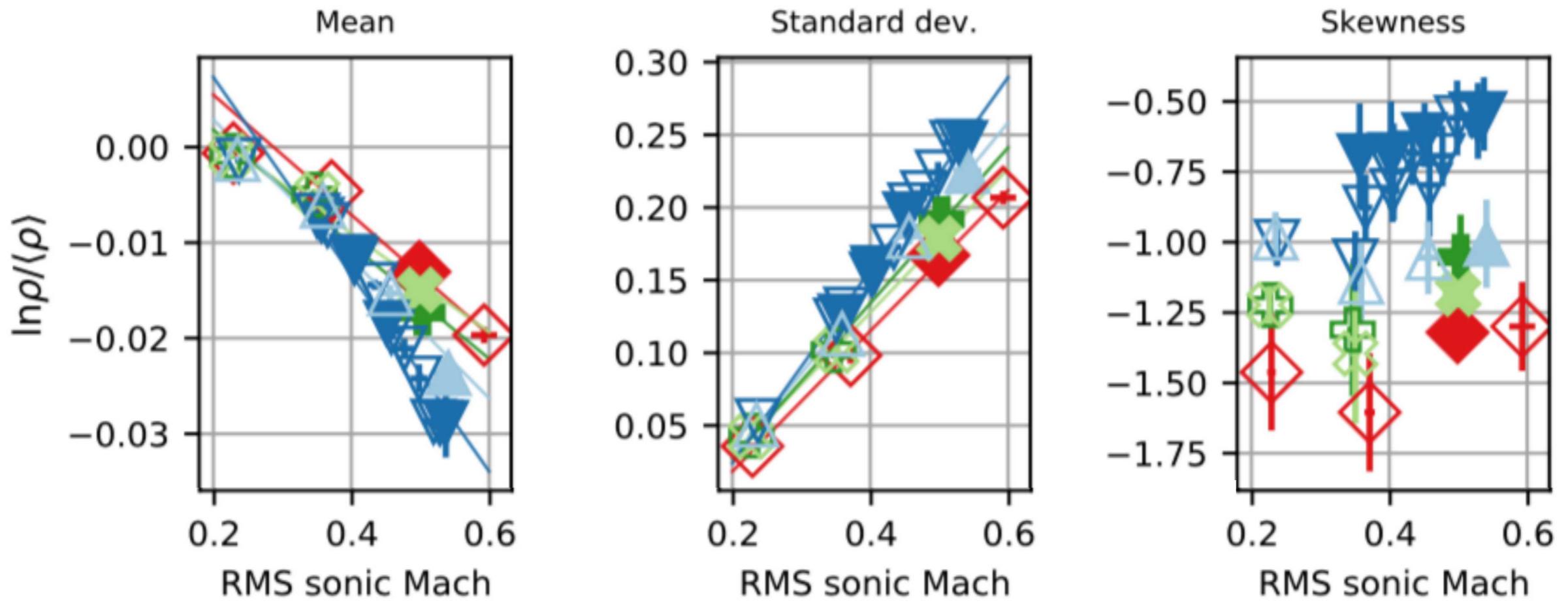


Correlations in adiabatic turbulence

- Subsonic, super-Alfvénic
- EOS: $\gamma = 1.0001, 7/5, 5/3$
- Cooling:
 - ~Linear: $\mathcal{L} \propto \rho T$
 - ~Free-free: $\mathcal{L} \propto \rho^2 \sqrt{T}$



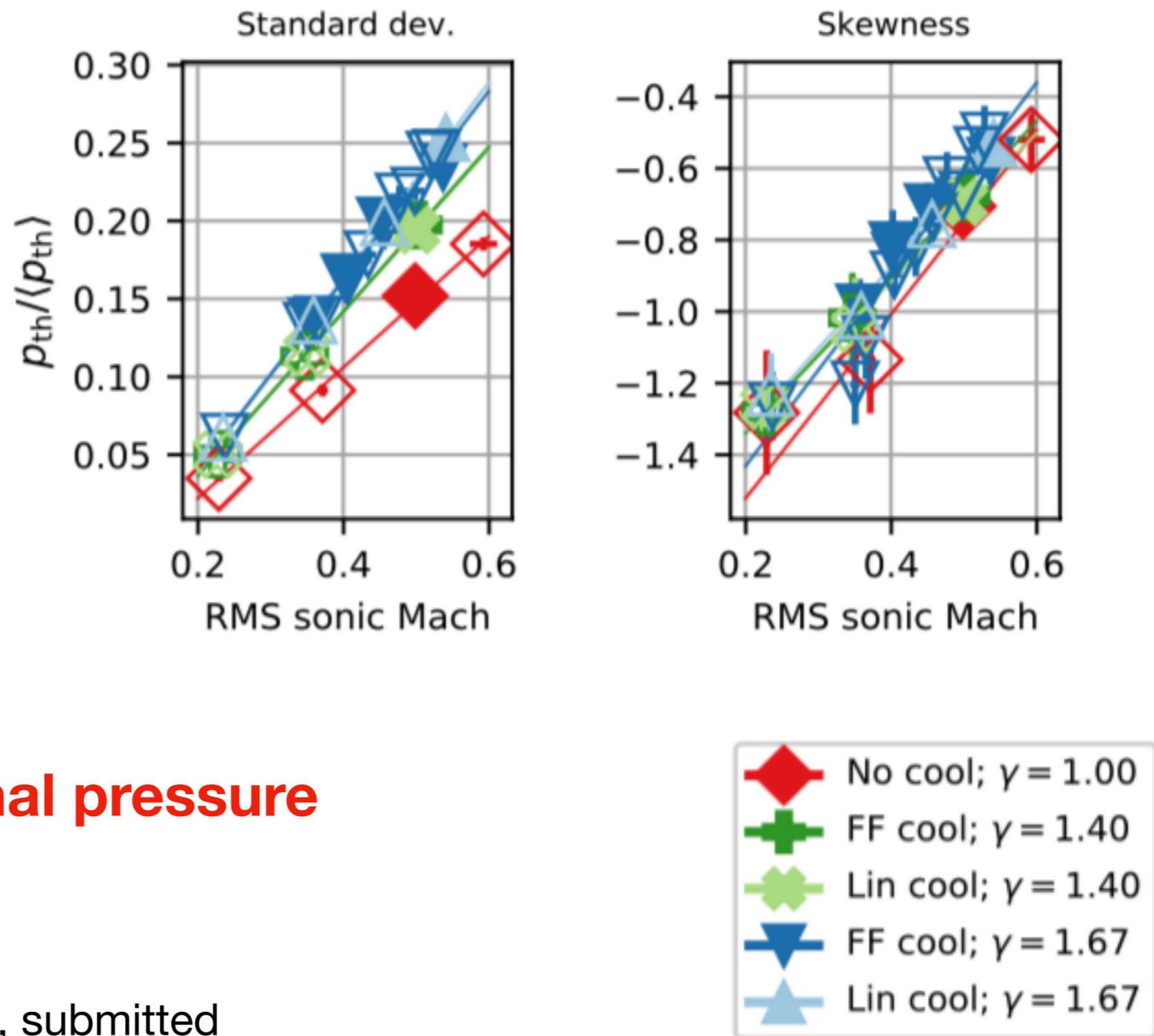
Correlations in adiabatic turbulence



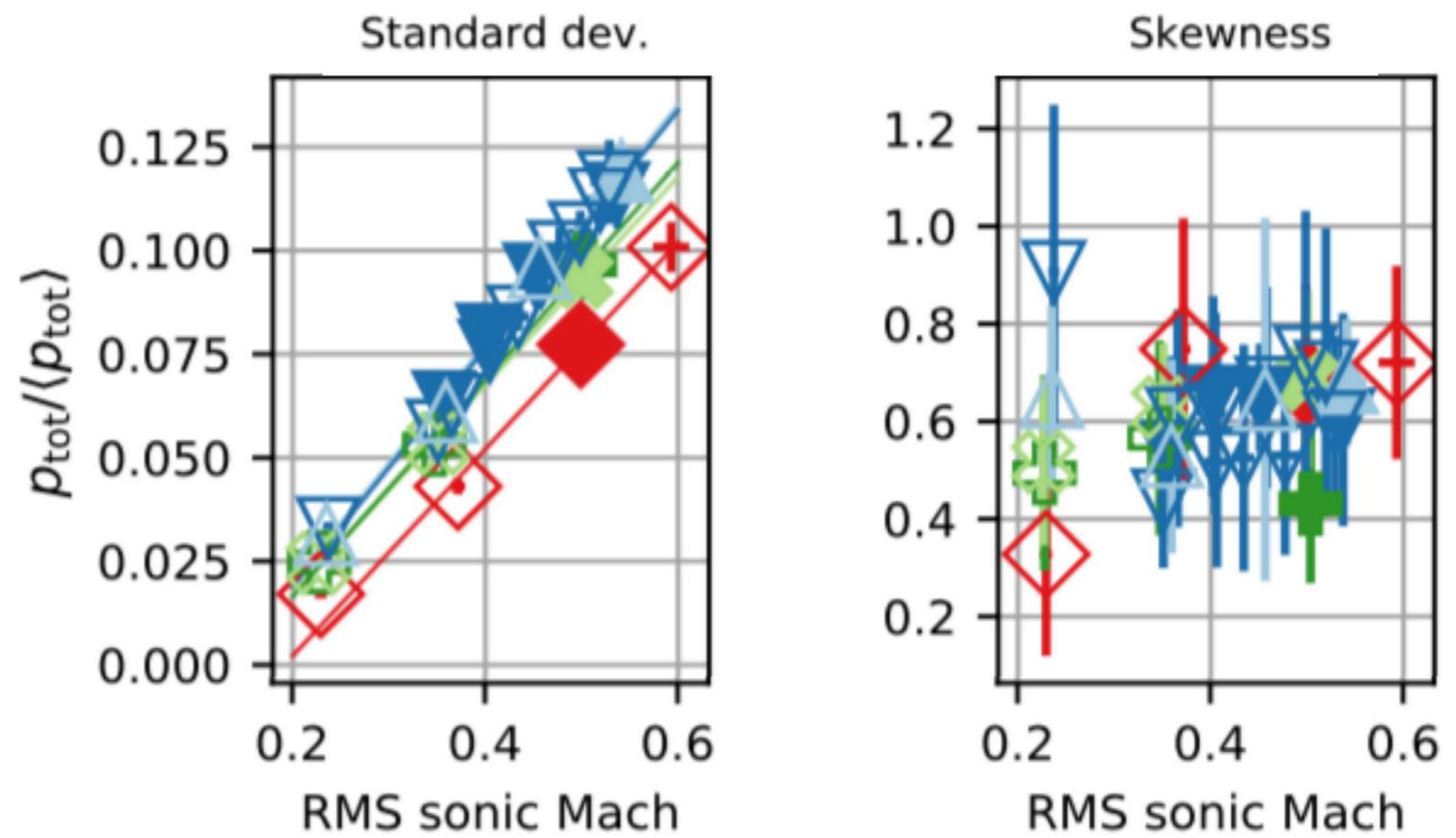
Density

- No cool; $\gamma = 1.00$
- FF cool; $\gamma = 1.40$
- Lin cool; $\gamma = 1.40$
- FF cool; $\gamma = 1.67$
- Lin cool; $\gamma = 1.67$

Correlations in adiabatic turbulence



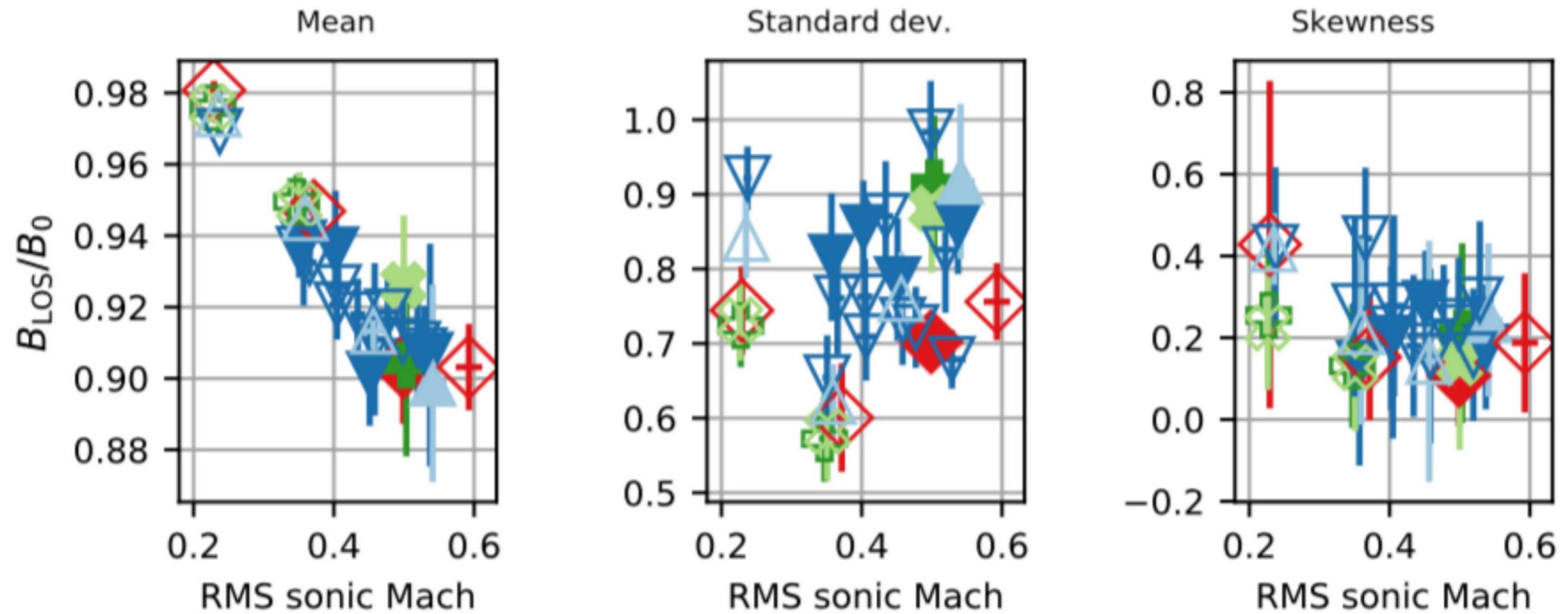
Correlations in adiabatic turbulence



TOTAL pressure

- ◆ No cool; $\gamma = 1.00$
- ✚ FF cool; $\gamma = 1.40$
- ✖ Lin cool; $\gamma = 1.40$
- ▼ FF cool; $\gamma = 1.67$
- ▲ Lin cool; $\gamma = 1.67$

Correlations in adiabatic turbulence



**Derived line-of-sight
magnetic field**

- No cool; $\gamma = 1.00$
- FF cool; $\gamma = 1.40$
- Lin cool; $\gamma = 1.40$
- FF cool; $\gamma = 1.67$
- Lin cool; $\gamma = 1.67$

Future work

- Energy transport in adiabatic turbulence with anisotropic transport (viscosity, conduction)
- Extremely large scale calculations on Summit (with K-Athena, a performance-portable version of Athena++ - Grete, Glines, and O'Shea 2019, submitted)
- Development of MHD subgrid models for application to astrophysical turbulence

Summary

1. Including magnetic fields in turbulence adds channels for energy transport, and thus increases the complexity of analysis.
2. We have developed a **formalism for studying energy transport** in **compressible, magnetized turbulence**, with the goal of developing subgrid-scale (SGS) models for application to a variety of (astro)physical phenomena
3. Statistical properties turbulence are affected by the driving mechanism: longer correlation -> differences in density distribution and density-mag. field correlation -> skewed estimates of magnetic field from Faraday rotation!
4. Examining the effect of varied equations of state shows that many properties have a weak dependence on EOS, but strong dependence on compressibility.

Acknowledgments

- Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.