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Motivation

e Compressible, magnetized turbulence
IS ubiquitous in astrophysics
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 Plasma turbulence is also critical to
terrestrial problems of interest (e.g.,
dense plasma focus, plasma opening
switch; see Beckwith+ 2019)

e Common problems: huge range of
spatial, temporal scales

plasma source
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Hydrodynamic turbulence

Re ~ 104 Clip from The Slo-Mo Guys, YouTube, 2015



Hydrodynamic turbulence
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Complexities from magnetic fields
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Large eddy simulations

Challenge: expense of full MHD = @ @ @ @ ©

simulations

DNS - i
Separation of scales suggests ALES< >< >
unresolved/SGS

large eddy simulations as
possible solution

Problem: MHD subgrid-scale E(k)
(SGS) model
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Energy budgets in iIncompressible MHD
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magnetic tension
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magnetic tension

e.g., Verma 2004, Alexakis+ 2005



Energy budgets in compressible MHD
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Grete+ 2017, Physics of Plasmas




What can we learn from the A
energy transfer function?
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large scale by advection small scale
kinetic and compression Kinetic
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7 by magnetic tension
and pressure

large scale by advection small scale
magnetic and compression magnetic



Fraction of flux

Mean cross-scale flux in the inertial range
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Kinetic to kinetic
by advection (light)
and compression (dark)

Magnetic to kinetic
by mag tension (light)
and mag pressure (dark)
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Mag. to kin. by magnetic tension
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Correlations in isothermal turbulence
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e |sothermal, isotropic, 0.6 T 5-5-.
homogeneous MHD
turbulence

e Subsonic (Ms ~ 0.5),
super-Alfvenic

e Solenoidal driving with

varying autocorrelation L SR S ey
time and normalization.
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Grete, O’Shea & Beckwith 2018, Apd Letters



Correlations in isothermal turbulence

correlated in time

Grete, O’Shea & Beckwith 2018, Apd Letters



Correlations in isothermal turbulence
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Correlations in adiabatic turbulence

Subsonic, super-Alfvénic
EOS: y = 1.0001, 7/5, 5/3
Cooling:

e ~Linear:

LxpTl
o ~Free-free: L ox p°/ T

Corr{p, B]

Corr[P, B?]

Grete, O’Shea & Beckwith 2019, submitted
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Correlations in adiabatic turbulence

Mean Standard dev. Skewness
0.30
b o -0.50 -
0.00 TR ’A ' ~0.75 -
. , 0.20 -
S -0.01 - ~1.00 1V 4
a ’ 0.15 - It {
E‘ - \,* -1.25 45 =5 ¢
=0as = 0.10 - ¥i
-1.50 - {P |
- - 0.05 +,7%
0.03 > -1.75 -
| | | | | I | | 1
0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
RMS sonic Mach RMS sonic Mach RMS sonic Mach

’- No cool; y=1.00

Density ~a- FF cool; y=1.40
Lin cool; y=1.40

W= FF cool; y=1.67
Grete, O’Shea & Beckwith 2019, submitted Lin cool; y=1.67



Correlations in adiabatic turbulence

Standard dev. Skewness
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Correlations in adiabatic turbulence
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Correlations in adiabatic turbulence
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Future work

* Energy transport in adiabatic turbulence with anisotropic
transport (viscosity, conduction)

 Extremely large scale calculations on Summit (with K-
Athena, a performance-portable version of Athena++ -
Grete, Glines, and O’Shea 2019, submitted)

 Development of MHD subgrid models for application to
astrophysical turbulence



Summary

1.Including magnetic fields in turbulence adds channels for energy
transport, and thus increases the complexity of analysis.

2.We have developed a formalism for studying energy transport
Ig , with the goal of
developing subgrid-scale (SGS) models for application to a
variety of (astro)physical phenomena

3. Statistical properties turbulence are affected by the driving
mechanism: longer correlation -> differences in density
distribution and density-mag. field correlation -> skewed
estimates of magnetic field from Faraday rotation!

4. Examining the effect of varied equations of state shows that
many properties have a weak dependence on EOS, but strong
dependence on compressibility.
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