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Motivation
• Compressible, magnetized turbulence

is ubiquitous in astrophysics

• Plasma turbulence is also critical to
terrestrial problems of interest (e.g.,
dense plasma focus, plasma opening
switch; see Beckwith+ 2019)

• Common problems: huge range of
spatial, temporal scales
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Hydrodynamic turbulence
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Complexities from magnetic fields
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Large eddy simulations

• Challenge: expense of full MHD eddies

simulations

• Separation of scales suggests
large eddy simulations as
possible solution

• Problem: MHD subgrid-scale
(SGS) model

• Study energy transfer in
idealized setups!
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Energy budgets in incompressible MHD
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e.g., Verma 2004, Alexakis+ 2005



Energy budgets in compressible MHD
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What can we learn from the
energy transfer function?

Cross-scale transfer

Total transfer

Shell-to-shell transfer
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Mean cross-scale flux in the inertial range
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Correlations in isothermal turbulence

• Isothermal, isotropic, 0.6

homogeneous MHD
turbulence 0.4

(J)

• Subsonic (Ms ~ 0.5), eL 0.2
super-Alfvénic

• Solenoidal driving with
varying autocorrelation
time and normalization.
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Grete, O'Shea & Beckwith 2018, ApJ Letters



Correlations in isothermal turbulence
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Grete, O'Shea & Beckwith 2018, ApJ Letters



Correlations in isothermal turbulence
c5
E F5(a)

10'

101

10°
u
oa)

V)

>N 10-1

10-

E 10-3
0

10-4

10-

p1/16T
(a) -- pl/ 4T p 1-1

' (a) ' (a)

total (shifted)
M._

rotational,.......,,..,.....7...,...,._...4.,
""'• •

„ 'ft* •
"ft*
•

• •
N.‘‘
•

♦

•.\..
compressive • 

1 1 1 1 1 1 1 1 1 1 1

10° 101 102
wavenumber k

Grete, O'Shea & Beckwith 2018, ApJ Letters

5

0.5

—1.0

3

u_ 2

1

0

—0.75 —0.50 —0.25 0.00 0.25 0.50
lnp

Ft a) . F 1 / 16 T
(a)

_ _ . F](.a/)4T p1-1
' (a)

iN ‘

$.
.0 ,.........„-.,

- ..............

, ,.. _ --,
... .„... ..........

s.o.f.-7°;:z
- .... -.. -...,(a)

„

s._C.-5.1--:...'"...--.'-. .
%  
, .••

0 1 2 3
time t [T]

4 5

b)

7.5

5.0

o
2.5

0.0

(c)

•
1.•1

—

—0.2 0.0 0.2
LOS Bx

0.4



Correlations in adiabatic turbulence

• Subsonic, super-Alfvénic

• EOS: y = 1.0001, 7/5, 5/3

• Cooling:

• ~Linear: E p T

• ~Free-free: E p2N/T 0.00 -
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Grete, O'Shea & Beckwith 2019, submitted



Correlations in adiabatic turbulence
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Correlations in adiabatic turbulence

0.30 -&

0.25

Standard dev.

0.20  

z< 0.15 -

(Aewness

—0.4

—0.6

—0.8

—1.0

—1.2

—1.4

0.4 0.6 0.2 0.4 0.6

RMS sonic Mach

Thermal pressure

Grete, O'Shea & Beckwith 2019, submitted

RMS sonic Mach

No cool; y = 1.00

FF cool; y = 1.40

Lin cool; y = 1.40

FF cool; y = 1.67

Lin cool; y = 1.67



Correlations in adiabatic turbulence
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Correlations in adiabatic turbulence
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Future work

• Energy transport in adiabatic turbulence with anisotropic
transport (viscosity, conduction)

• Extremely large scale calculations on Summit (with K-
Athena, a performance-portable version of Athena++ -
Grete, Glines, and O'Shea 2019, submitted)

• Development of MHD subgrid models for application to
astrophysical turbulence



Summary
1.Including magnetic fields in turbulence adds channels for energy
transport, and thus increases the complexity of analysis.

2.We have developed a formalism for studying energy transport
in compressible, magneti-ed turbulence, with the goal of
developing subgrid-scale (SGS) models for application to a
variety of (astro)physical phenomena

3. Statistical properties turbulence are affected by the driving
mechanism: longer correlation -> differences in density
distribution and density-mag. field correlation -> skewed
estimates of magnetic field from Faraday rotation!

4. Examining the effect of varied equations of state shows that
many properties have a weak dependence on EOS, but strong
dependence on compressibility.
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