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2 Introduction •

• X-Ray Phase Contrast Imaging (XPCI)

• Useful for visualizing weakly absorbing/low-density materials

• Provides three image products compared to conventional x-ray CT

• Limitation:

• Very slow acquisition of data

• Undersampling accelerates data collection at the cost of image artifacts

• Purpose: can we apply machine learning algorithms to reconstruct few-view XPCI data with high
fidelity?
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3 Training Data

• Single XPCI dataset acquired
with 3213 projections

• Talbot-Lau-based system
with three gratings

• Six types of plastics in a cup

• Fully sampled dataset
requires 451 projections 4
oversampling factor of 7x

• Short term focus on
reconstruction of undersampled
absorption images r
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4 Decimation Factors

Different machine learning models trained for each decimation factor

Decimation factor 4 (451/4 = 112 projections)
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5 Methods ■

• Convolutional neural network (CNN)

• Input: undersampled image

• Output: de-aliased image

• Slice-by-slice de-aliasing of 3D volume

• Minimizes memory requirements

• Patch-based training for additional memory efficiency and data augmentation

• For a given slice (357 x 357), 64 random patches of size 64 x 64 extracted

Patched input Patched output



6 Methods •

• Input (undersampled image) and output (fully sampled image) spatially misaligned following
reconstruction

• Consequence of FDK reconstruction with commercially available Volume Graphics
software

Sample input
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7 Methods •

• Input (undersampled image) and output (fully sampled image) spatially misaligned following
reconstruction

• Consequence of FDK reconstruction with commercially available Volume Graphics
software

Sample output
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8 Methods •

• Input and output spatially misaligned following reconstruction

• Affine registration technique implemented with four transformations to correct for
misalignment

• Translation, scale, shear, and rotation (12 total parameters)

• Solver: Conjugate gradient; Optimization criteria: mean squared error

IF- --r- --mu -.4.04-.01- -.-- -4.-1Sample input after registration



9 Methods •

• Input and output spatially misaligned following reconstruction

• Affine registration technique implemented with four transformations to correct for
misalignment

• Translation, scale, shear, and rotation (12 total parameters)

• Solver: Conjugate gradient; Optimization criteria: mean squared error

Am"-
Sample output after registration



io Methods

• Residual U-Net Architecture

• Input: Undersampled image

• Output: residual image (= fully
sampled image —
undersampled image)

• Why? Sparse output is easier
to learn
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• Expansion/contraction Steps: 5 . Training parameters

• Filters: 64 3x3 kernels per
expansion/contraction

• Loss function:12

• Epochs: 200

• Solver:Adam

• Trained on NVIDIA GTX
I 060
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Jin et al. "Deep convolutional neural network for inverse problems in imaging." IEEE TM/ 26.9 (2017): 4509-4522.
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Results

Importance of affine registration to spatially align data

Input Model output trained with
misregistered data

Model output trained with
registered data



I 2 Results

Importance of affine registration to spatially align data
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Residual regression with decimation factor 4 (1 12 projections)
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Residual regression with decimation factor 8 (56 projections)
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Residual regression with decimation factor 12 (38 projections)
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16

Residual regression with decimation factor 16 (28 projections)
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I 7

Comparison of outputs for all decimation factors

Decimation factor 4

Decimation factor 12
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1 8
Training loss for all decimation factors
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19 Discussion •

• Convolutions neural networks enable reduction of under sampling artifacts in XPCI

• Demonstrated application in decimation factors ranging from 4 to 16
• Potential for significantly larger decimation factors

• Network parameters are being tuned for improved performance

• Network depth (= 5), number (= 64), and size (= 3x3) of filters, optimization routine (=
Adam) etc.

• Current network operates on 2D slices.A 3D network may further bolster performance

• Requires better GPUs with larger memory (e.g., NVIDIA Titan V)

• Work is underway to test more advanced network architectures (e.g., Dense, GANs)

• The current image reconstruction network does not incorporate known information about
underlying physics

• Hybrid iterative/deep learning routines are being implemented and tested
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Thank you!
Questions?

■


