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Introduction

e X-Ray Phase Contrast Imaging (XPCI)
* Useful for visualizing weakly absorbing/low-density materials
* Provides three image products compared to conventional x-ray CT
* Limitation:
* Very slow acquisition of data
* Undersampling accelerates data collection at the cost of image artifacts

* Purpose: can we apply machine learning algorithms to reconstruct few-view XPCI data with high
fidelity?

Absorption Dark field
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Training Data

* Single XPCI dataset acquired
with 3213 projections

* Talbot-Lau-based system
with three gratings

* Six types of plastics in a cup

* Fully sampled dataset
requires 451 projections =
oversampling factor of 7x

* Short term focus on
reconstruction of undersampled
absorption images
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Decimation Factors L M

Different machine learning models trained for each decimation factor

Decimation factor 4 (451/4 = |12 projections) Decimation factor 8 (451/8 = 56 projections)
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Methods

* Convolutional neural network (CNN)
* Input: undersampled image
* Output: de-aliased image

* Slice-by-slice de-aliasing of 3D volume
* Minimizes memory requirements

* Patch-based training for additional memory efficiency and data augmentation
* For a given slice (357 x 357), 64 random patches of size 64 x 64 extracted

Patched input Patched output
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* Input (undersampled image) and output (fully sampled image) spatially misaligned following
reconstruction

* Consequence of FDK reconstruction with commercially available Volume Graphics
software

Sample input




7

Methods

* Input (undersampled image) and output (fully sampled image) spatially misaligned following
reconstruction

* Consequence of FDK reconstruction with commercially available Volume Graphics
software

Sample output
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* Input and output spatially misaligned following reconstruction
* Affine registration technique implemented with four transformations to correct for
misalighment
* Translation, scale, shear, and rotation (12 total parameters)
* Solver: Conjugate gradient; Optimization criteria: mean squared error

Sample input after registration
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Methods

* Input and output spatially misaligned following reconstruction
* Affine registration technique implemented with four transformations to correct for
misalighment
* Translation, scale, shear, and rotation (12 total parameters)
* Solver: Conjugate gradient; Optimization criteria: mean squared error




(Output - Input)

o | Methods

 Residual U-Net Architecture
* Input: Undersampled image

* Output: residual image (= fully

sampled image — * Expansion/contraction Steps:5 ¢ Training parameters
undersampled image) * Filters: 64 3x3 kernels per * Epochs: 200
* Why!? Sparse output is easier expansion/contraction S Selvern Adkre
to learn * Loss function: e Trained on NVIDIA GTX
1060

Residual
slice

Input slice =

Jin et al. "Deep convolutional neural network for inverse problems in imaging." IEEE TMI 26.9 (2017): 4509-4522.
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Importance of affine registration to spatially align data

Input Model output trained with Model output trained with
misregistered data registered data

.
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Importance of affine registration to spatially align data

Input Network trained with Network trained with
misregistered data registered data

.



Residual regression with decimation factor 4 (112 projections)

All models evaluated on unseen
data and slices -

Input Network output Ground truth (fully sampled)

Example slice |

Example slice 2

Ring artifacts
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truth image
removed in
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output




| Residual regression with decimation factor 8 (56 projections) All models evaluated on unseen

|4 data and slices | | I
Input Network output Ground truth (fully sampled)
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Residual regression with decimation factor 12 (38 projections)

All models evaluated on unseen
data and slices .

Input Network output Ground truth (fully sampled)
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Residual regression with decimation factor 16 (28 projections)  All models evaluated on unseen
data and slices

Input Network output Ground truth (fully sampled)
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Comparison of outputs for all decimation factors All models evaluated on unseen

. data and slices [ | I

Decimation factor 4 Decimation factor 8
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Training loss for all decimation factors

—— Decimation factor = 4

—— Decimation factor = 8
Decimation factor = 12

—— Decimation factor = 16/ |
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* Convolutions neural networks enable reduction of under sampling artifacts in XPCl|

* Demonstrated application in decimation factors ranging from 4 to 16
* Potential for significantly larger decimation factors

* Network parameters are being tuned for improved performance

* Network depth (= 5), number (= 64), and size (= 3x3) of filters, optimization routine (=
Adam) etc.

* Current network operates on 2D slices. A 3D network may further bolster performance
* Requires better GPUs with larger memory (e.g., NVIDIA Titan V)
* Work is underway to test more advanced network architectures (e.g., Dense, GANs)
* The current image reconstruction network does not incorporate known information about
underlying physics
* Hybrid iterative/deep learning routines are being implemented and tested
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Thank you!
Questions?



