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Overview: Current delivery to Maglif targets on Z

• Z architecture (current measurements and locations)
• Current loss processes and their dependencies
• Characterizing distribution of current losses in the system
• Opportunities for improvements in measurements or analysis
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I Z architecture
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I Z vacuum section architecture
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Current coupling to a load depends on how the generator
responds to the imploding load
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For a representative loss model:
Maximizing energy coupled through target design is not
the same as minimizing current loss
Complex power flow physics will always need to be
parameterized in simpler circuit model descriptions

2.0

1.6
-0

a
a)

1.2
=
o
0 0.8>,
'2)
2 0.4
UJ

0.0

25

< 20
2

...' 15
2
15 10
0

5

0
3000 3050 3100 3150

Tlme / ns

3.4

Energy
Coupled

3.2

Loss Current

3.0 2.8 2.6
Outer Liner Radius / mm

Optimum

6

5 <
2

4 —
'E'

3 Pz)

2 u)
0
u)
o

1 —'

o

3.81mm

1.63mm

Outer
Radius

Radius scan
on Aspect
Ratio 6
Liners

Optimum
energy coupled

to target
volume varies

as circuit
responds to

load

1



Z vacuum section architecture and current measurement locations
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Current measurements at large radius rely on b-dots.
Voltage assessed at water vacuum insulator stack.
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16.2 MA delivered to standard 10mm tall Maglif target (Z 2851)

Apply techniques of the Z dynamic material properties program

-400 micron
Al plate

Accelerated
by return
current

This level of current loss is atypical for Z. Likely resulting from high
target inductance and extended feed used to bring electrodes into

field coil
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Transmission lines will have electron and ion losses, but
8 system is inherently robust to these losses.
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Subsequent enhancement mechanisms can increase current
9 loss, but tend to self limit or saturate
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Subsequent enhancement mechanisms can increase current
10 loss, but tend to self limit or saturate
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Low density plasma
cannot carry arbitrarily
large current density
(anomalous resistivity)

• Ion acoustic turbulence limiting
current on 1e17/cc 2eV plasma filling
entire inner-MITL is -3.5 MA

• Conductive plasma shorting gaps can
self clear through large jxB (Although
this can result in plasma accelerated
towards target volume)
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We reduce loss enhancement through load design (reducing
inductance)
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Lowering initial inductance is seem to significantly improve
12 current coupling
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Visar/PDV measurements in conjunction with a circuit model can
13 better characterize current losses ?

Representation of final section of the feed through to the load
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Assume that:
• From visar/pdv we know 12 and d12/dt
• From Z electrical data we know 1 1 and d11/dt and \etc
• From taking 12 and using it to drive an MHD calculation of the load

implosion we have VL

• From hardware we know the final inductance LT=Ll+L2

LVL — vc, + L T dh 
dt

If we know all those things, then the unknown
becomes the location of the current loss L2

L2

dI1 d12

dt dt

.V L Load

This style of layered
analysis could benefit

from more
comprehensive data
analysis techniques.



2898 indicates substantial loss first turning on at the end of the feed
14 (close to load), with convolute loss turning on later

For standard Maglif configuration on
7.5mm tall target:

1. Large current loss starts in the final
feed (inner MITL), in close proximity
to the load.

2. Convolute loss turns on -20ns later.
3. Around peak current the solution

blows up so can't constrain loss
location.

Maglif targets see very high current losses
that start early in time. But high initial
inductance creating problems in the
convolute may not be the route cause.
We might instead be shorting across the
narrow feed gaps close to the load early
in time.
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Depending on loss location, reducing feed inductance may help or
15 hurt Loss Located in Convolute

Loss Located in Feed



Z 3038
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We must ensure higher currents
are making it to the load

• From convolute b-dot perspective it
appears lowering inductance significantly
improved current delivery

• From visar perspective less current was
delivered to the load



Details of feed geometry are important in determining current coupling to load

Standard Maglif
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18 Electrical energy coupled to Maglif liners is dominated by
late time (post peak) energy coupling

Energy delivered
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To more directly quantify energy coupling we cannot rely just on peak currents.
Assessment of rate of current drop, or voltage assessment at the load location would be valuable.
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Conclusion

Current measurements on Z are challenging (as are power energy measurements)

Current coupling can be improved through choice of initial load inductance.

Electrode plasmas can enhance losses (their properties need to be better understood)

Inner electrode geometry is important (limits reduction of inductance)


