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MISINTERPRETING DIFFRACTION ANALYSES UNIFYING DIFFRACTOGRAM WIDTH ANALYSES THROUGH ATOMISTIC MODELING

Grain-morphology evolution in nanocrystalline materials strongly affects |. Atomistically Simulating Grain-Morphology Evolution in Nanocrystalline Nanowires
the deformation mechanisms collectively responsible for mechanical , , .
We obtain full volumetric statistics
performance. . .
by analyzing molecular-dynamics
Because nanocrystalline materials, with billions of grain boundaries per simulations of nanocrystalline nickel
cubic millimeter, provide a useful ‘defect laboratory’ by which to study nanowires subjected to anneal, creep
boundary/network-mediated behavior and emergent mechanistic and mechanical fatigue [1].
phenomena, techniques for tracking nanoscale grain sizes in situ r .
pose high value experimentally. Trends in grain size suggest that both il
thermal and mechanical mechanisms .
The X-ray diffraction (XRD) analysis of peak widths offers a pragmatic contribute to grain growth.
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size, microstrain, and dislocation density. Unfortunately, overlapping dislocation densities from the !> +0
nomenclatures and overlooked nuances complicate rational applications atomistic models to evaluate the 7.0
of width analysis. accuracy of the predictions from a g =65
survey of width analyses. 3 <
OBJECTIVE: This study uses virtual X-ray diffraction from - She
atomistic simulation results to unify and generalize XRD 5 5
nomenclature to facilitate diffractogram width analysis for s
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2. Generating Virtual X-ray Diffractograms from Simulations
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We simulated virtual diffractograms [2] for the nanocrystalline nickel nanowire at the initial state and
every |0-ns increment of anneal, creep and fatigue. Peak widths () and peak centers (20) are identified
through pseudo-Voigt fits. The magnitude of B depends not only on the crystallographic plane (hkl) but
also on the width type, full-width-half-max width or integral-breadth width.

vary by:

(i) Width type: full-
width-half-max (F) or
integral-breadth (/)

(i) Broadening | il I i”l I , IN BRIEF

sources: domain

size (D), strain (&) 20 - - : - : - SUMMARY: Since the landmark development of the Scherrer method 100 years ago, many specialized
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stress (), energy (u), < 16- - Loading regimes cause a rapid loss in fit d. Of the mechanical broadening sources, h _ _ \ versions of diffractogram width analysis have originated to rapidly and non-destructively characterize
4 gy ) IE for Scherrer and Williamson-Hall. deformation energy u fits best. e ., | | £ - terials. To facilitate th ti | licati f width |
dislocation densit)l M 12 4 b. Width type & functional form affect both e. Correct trend in defect density requires | : drge volumes ot unique nanomaterials. 1o f1acilitate the rational applications of wi analyses, we
d dis| : 8 the magnitude and the trend. Q term and Lorentzian functional form. present a unified theory and generalized nomenclature enabled by atomistic modeling.
(p)l an Islocation Q 8- c. Second-order dislocation term improves f. In general, integral-breadth better predicts - 4
- goodness of fit. domain size. . . . .
correlation (Q) o \_ v | ; TR CONCLUSION: We demonstrate the width-method selection, in terms of width type,
(iii) Functional Ny S — (|l | . e L br'oacclzlenlfn%l source, :nd funI::.tlonaIdf.or!n can affect not only the magnitudes but also the
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Lorentzians (') or ’ ' S ; : - : :
Gaussians () Scherrer| Williamson-Hall Elasticity Modifications Dislocations Modifications OU.TLOOI.(..The presgnt methodol.ogy can be .applled Fo various nanocrystalline materials systems and
u loading conditions to guide the associated experimental investigations.
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