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2 Motivation and outline

Modeling power-flow with high fidelity is of utmost importance for
improving the performance of experiments on present and future
pulsed power facilities.

• PERSEUS, Hall MHD

• Transmission lines: Hall MHD simulations show complex behavior

• PERSEUS vs HYDRA, Hall MHD

• Close qualitative agreement for influence of Hall physics on magnetic
diffusion into low-density plasma.

• PERSEUS vs EMPIRE-Fluid vs EMPIRE-PIC
• EMPIRE-Fluid is a fully two-fluid code.

• Close three-way agreement for 1-D TEM wave interacting with plasma layer.

• PERSEUS shows damping/diffusion after times approaching 1 ns.
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I Extended MHD equations add Hall physics to
resistive MHD model**

• Maxwell:
aB aE
—a = —V x E, —at = c4'

,
(V x B — µoh

a
• Continuity: a t (mn) + V • (mnv) = 0

a
• Momentum: —

at 
(mnv) + V • (mnvv + PI) = J x B

• Energy: ;t + V • [v(E + P)] = (J x B) • v + 7112 1

• Extended-MHD Generalized Ohm's Law:

** Until recently, the overwhelming

majority of fluid simulations of pulsed-
power problems employed an MHD

theory.
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• Large Hall term relative to dynamo term: small ion inertial length relative to spatial scales, i.e. low-density plasma.

• Large Hall term relative to resistive term: strongly magnetized plasma (electron gyrofrequency large relative to collision

frequency).



PERSEUS: Power flow along coaxial transmission line in
axisymmetric cylindrical geometry

Simulated region (12 cm)
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Current reaches
20 MA in 100 ns

• How is energy coupling affected by
plasma from electrode surfaces?

• How does Hall physics affect the
modeled energy losses?

4- gap width = 6.5 mm



PERSEUS: Simulations are initialized with a thin plasma
layer to study the time-evolution of electrode plasmas

6 5 mm
A .4-______•,

z A

 ►r

Inner
conductor
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Initial layer of plasma (1-cell-thick).
Initial density no = 1023 m-3.

Poynting inflow
at bottom

i 

Electrodes (in gray) are static; do not
produce plasma. This allows explicit control
of plasma initialization and eliminates non-
ideal effects from solid-to-plasma transition.

Outer
conductor

• Gap width — 6.5 mm

• Inner radius R — 23 mm

• 52x960 cells spanning 0.65 x 12 cm

• Ax = 125 p.rn

• Current follows a sine-squared

temporal profile that increases to

20 MA over a 100-ns rise time,

and then remains at 20 MA.



PERSEUS: Hall term generates anode-cathode asymmetries
MHD, initialized
against cathode

MHD, initialized
against anode

MHD is insensitive
to polarity.

Hall MHD shows

considerably more

blow-off for

anode-initialized case.

Hall MHD, initialized Hall MHD, initialized

against cathode against anode
Layer is initialized

against the inner

conductor, on left.

n
floor = 10-9 nsolid

• 6.5 mm gap, 60 ns,

• initial layer density

no = 1023 m-3
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PERSEUS: Radial current is shunted from anode - resulting in loss

Blue: Hall MHD, cathode layer

Red: Hall MHD, anode layer
Green: MHD, cathode layer

Magenta: MHD, anode layer

Integrate Jr along 12-cm

domain length in z.
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PERSEUS: Anode filaments carry reversed axial current

• Hall MHD, 6.5 mm gap, 23 mm radius, no =

1023 m-3 layer initialized on anode (inner

conductor).

• ExB drift is relevant for the electrons only in

the Hall regime.

• This creates current opposite to the power

flow direction.

• This plasma current is opposite the anode
current and in the same direction as the

cathode current.

• This results in a repelling of the plasma away

from the anode.
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PERSEUS vs HYDRA: Magnetic diffusion into low-density plasma

Z

1 mm
4 

2 mm 1 mm

Z = 2.44

ri = 1.46 x 10-8 Ohm m

p = 2.7 g/cm3

Hall physics
reduces
effective
resistivity

solid Al

1
Z = 1.8065

n = 2.94 x 10-4 Ohm m
p = 10-6 g/cm3

Hall physics
increases
effective
resistivity

r = 23 mm

Ar = 25 p.m

r = 25 mm

Results are approximately

converged for Ai- 25 pm.



PERSEUS vs HYDRA: Influence of Hall term on magnetic diffusion

• Faraday's law with Hall term: 
„ ne V x

rd 
— 
v x B

—013 
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• Hall term contributes: V x 
[
—
JXE31 

= 1V x (I x B) — 
B[v Gil) . j1,

ne ne 
e 

• Simplifying assumptions:

• 2-D axisymmetric system; only Jr,h, and Bo are nonzero.

• Spatially uniform resistivity and density within each material (vacuum, plasma,
electrode).

• Negligible displacement current.

• Limited motion of plasma and electrodes.

• Faraday's law with Hall term and simplifying assumptions:

• aB, _ riv2139 2Bor Bo i 1 an 1 an 
a 2 ar 7- t ner e n  1 +-- I )n2 az z

J • B = 0



PERSEUS vs HYDRA: Magnetic diffusion in MHD

• In MHD, PERSEUS and HYDRA show close agreement.

• Axially uniform diffusion in both cases, unaffected by density gradients at boundaries.
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PERSEUS vs HYDRA: Magnetic diffusion in Hall MHD

• In Hall MHD, PERSEUS and HYDRA show close qualitative agreement.

• With Hall physics, diffusion rates depend on density gradients at boundaries.

• Faraday's law with Hall term:
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EMPIRE vs PERSEUS: 1-D TEM wave

w = 1012 s-1
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Small space and time scales:

Explicit advance in EMPIRE

requires resolving electron space

and time scales.



EMPIRE vs PERSEUS: 1-D TEM wave

PERSEUS, EMPIRE-Fluid, and

EMPIRE-PIC show close

agreement after 66.6 ps.
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EMPIRE vs PERSEUS: ICF-relevant MITL modeling

• PERSEUS loses accuracy if > 1,000,000 time integrations are required.
• Could be mitigated by using a reduced speed of light.

• Even if implicit advance enables stepping over plasma frequency,
Courant limiting by physical speed of light can lead to prohibitive
computational times.



Conclusions

• PERSEUS, Hall MHD
• Transmission lines: Hall MHD simulations show plasma blow-off at anode; not seen at

cathode.

• How would this be affected by incorporation of space-charge limiting in a fully two-fluid
model?

• PERSEUS vs HYDRA, Hall MHD
• Close qualitative agreement for influence of Hall physics on magnetic diffusion into low-

density plasma.

• The Hall term models alteration of diffusion rates due to density gradients at plasma
boundaries.

• PERSEUS vs EMPIRE-Fluid (two-fluid) vs EMPIRE-PIC

• Close three-way agreement for 1-D TEM wave interacting with plasma layer.

• PERSEUS shows damping/diffusion after times approaching 1 ns.



Future directions in MITL flow modeling

• Incorporation of thermal and field desorption models

• Extension of fields to relativistic regime (r%) 1 MV)

• Hybridize EMPIRE-fluid and PIC using delta-f approach.

• Validation between EMPIRE-Hybrid and Chicago

• 2-D planar/coaxial MITL, then 3-D convolute geometries


