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2 Iron is an important material for planetary sciences and many
other high energy density applications

Important Current Research:

Measuring the P-p equation of state (EOS) of liquid
iron at previously unexplored off-Hugoniot isentropes

Isentropic compression is an extremely useful way to
study planetary equations of state



3 The conductivity of iron is important for understanding the evolution of
planetary cores
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Unresolved Question:

Current estimates of the conductivity of the
Earth's core could produce an inner core
ranging from 4 billion to 1 billion years old

Important Current Research:

Measuring conductivity of liquid iron at
planetary core conditions

Convection drives
the magnetic field



4 We designed an experimental path close to the conditions of
the Earth's core
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5 I The strip-line target configuration is a common method of
driving planar samples to high pressure and density states on Z

Load hardware details
o Top Sample Pair Shown

o Parallel counter-propagating current drives the panels apart symmetrically

o Flight gap leads to initial shock
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Conductivity Measurements
with Ellipsometry



7 Ellipsometry uses a polarized laser to probe material dielectric
properties at the laser wavelength I
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8 I Along with the standard VISAR diagnostics, we have been
fielding ellipsometry on one to two samples

Implementation of New
Diagnostic
o Hardware/Procedural Changes
o No negative impact on other
diagnostics or experiment

Advantages of this
Experiment
o Overdriving detrimental window
effects

o Minimal tilt compared to gas guns
o AC conductivity closely matches DC
conductivity at these wavelengths
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9 The Z hardware engineers made the fielding of this diagnostic possible



10 I Obtaining specular reflections on dynamic experiments is difficult

Surface roughness and impactor tilt can severely hinder such
measurements

Surface roughness can be propagated through the shock wave

Ellipsometry depends on AOI
° cannot simply increase the collection

Ensure all surfaces are as smooth as possible
o Diamond turned metals (maybe lapping too)

10-30 nm Ra

Polished single crystal LiF

20/10 scratch/dig

Specular Reflection

Scattered Reflection

Tilted Reflection



11 Using a polished LiF 'sample' we obtained our best collection yet

Smoothed and Normalized Raw Data
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12 With increased focused on polishing, we were also able to see
significant improvement on with an iron sample, though not as
much as for the LiF sample arrangement
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Equation of State



14 We use measurements of the particle velocity at all of the sample-
window interfaces, provided by VISAR
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1 5 An iterative backward-integration forward Lagrangian analysis
is used to build the equation of state

Backward Integration
• The Lagrangian hydrodynamic equations along

with a guess of the equation of state are backward
integrated to obtain the drive profile at the sample-
impactor interface:
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16 The drive conditions for the two samples should be equal until
the release wave from the thin sample reaches this interface

Particle Velocity (mis)
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17 An iterative backward-integration forward Lagrangian analysis
is used to build the equation of state

Backward Integration
• The Lagrangian hydrodynamic equations along with a guess of the equation

of state are backward integrated to obtain the drive profile at the sample-
impactor interface:

Forward Propagation
• The drive state can then be propagated forward to

the sample-window interface to obtain the in-situ
particle velocity (the particle velocity that would
have been present at that location had there not
been a release interface)
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18 The drive condition is propagated forward to the sample-
window interface location

Particle Velocity (m/s)
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19 An iterative backward-integration forward Lagrangian analysis
is used to build the equation of state

Backward Integration
• The Lagrangian hydrodynamic equations along with a guess of the equation

of state are backward integrated to obtain the drive profile at the sample-
impactor interface:

Forward Propagation
• The drive state can then be propagated forward to the sample-window

interface to obtain the in-situ particle velocity (the particle velocity that would
have been present at that location had there not been a release interface)

Lagrangian Sound Speed and EOS
• A sound speed can then be directly calculated from

Ax/At measurements
• A P-p EOS is formed from the sound speed:
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20 I the equation of state.
Sound Speed

Sound Speed (m/s)
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21 An iterative backward-integration forward Lagrangian analysis
is used to build the equation of state

Backward Integration
• The Lagrangian hydrodynamic equations along with a guess of the equation 15[P(P)] äu

of state are backward integrated to obtain the drive profile at the sample-
8x. = —Po Stimpactor interface:

1 äu 8 [id
Forward Propagation
• The drive state can then be propagated forward to the sample-window po Sx St

interface to obtain the in-situ particle velocity (the particle velocity that would
have been present at that location had there not been a release interface)

Lagrangian Sound Speed and EOS
• A sound speed can then be directly calculated from Ax/At measurements
• A P-p EOS is formed from the sound speed:

Iterate
• The process is then repeated with this new EOS
• This iterative process continues until the new EOS

matches the solution from the previous iteration
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An iterative backward-integration forward Lagrangian analysis is used to
22 build the equation of state
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23 Results from our previous experiment agree well with current EOS tables
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24 This framework typically assumes a steady shock front before
the ramp
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25  This framework typically assumes a steady shock front before
the ramp
•Our most recent experiment experienced noticeable decay on the initial shock state
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26 I The experiment is no longer constrained along a single
isentrope

•Instead, a range of isentropes are covered based on the Lagrangian position of the sample
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27 I With modifications to the standard analysis, we analyzed the
data from the three sample pairs in Z3339

Modifications primarily include:

•The shock-front, and associated boundary condition, varies as a function of
Lagrangian position, based on the observed shock states at impact and the two
sample-window interfaces.

•Instead of inputting a single isentrope EOS as the 'guess' into the iterative process,
a range of isentropes covering the conditions defined by the variable shock state
must be provided or generated by the user.



28 With modifications to the standard analysis, we analyzed the
data from the three sample pairs in Z3339
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29 However, the latter half of these data sets are not adequately
converging
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30 We combine the relevant data from all three sample pairs

Pressure (GPa)
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31 Our two data sets both agree well with the iron 92141 sesame
EOS table
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32 I Equation of state information is often incorporated
research via parameters to analytic models

•Various analytic models
• Birch-Murnaghan, Vinet,

Mie-Gruneisen, etc.

•Planetary modeling codes
• BurnMan

*Fit parameters for the

existing liquid data:
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Figure 2. Density and pressure profiles for a two-layer (pure liquid Fe core and
MgSiO3-bridgmanite mantle) one Rs planet as a function of planetary radius
for a variable core radius. PREM is shown in the black-dashed line for
comparison. Average planet densities for each model are shown as arrows of
same color scheme as density/pressure profiles. Figures 2-5 are all plotted on
the same scale for comparison.

Unterborn, C. T., Dismukes, E. E., Et Panero,
W. R. (2016). Scaling the Earth: a sensitivity
analysis of terrestrial exoplanetary interior
models. The Astrophysical Journal, 819(1), 32.



33 Our fit matches most of the existing experimental data to
within 2 GPa
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34 Thus we obtain an EOS surface for liquid iron
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35 Thus we obtain an EOS surface for liquid iron
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In comparison to a similar
curve generated for solid
iron by Fei et al., our
surface is -10 GPa (-3%)
lower at the conditions of
the Earth's core.

Fei, Y., Murphy, C., Shibazaki, Y., Shahar, A., Et Huang, H. (2016).
Thermal equation of state of hcp-iron: Constraint on the density deficit of
Earth's solid inner core. Geophysical Research Letters, 43(13), 6837-6843.



36 I Conclusions and Future Work

Conclusion:
o We have performed shock-ramp experiments on Sandia National Laboratories' Z Machine to
evaluate the equation of state of liquid iron along an elevated isentrope near Earth core pressure
and temperature conditions.

o The results agree well with the 92141 sesame table, validating its accuracy in this parameter region.

o We provide fit parameters for a new analytic EOS for liquid iron.

Future Plans:
O It would be even more beneficial to planetary models to get similar measurements on iron alloys
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