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Outline

• Very Deep Borehole Disposal (VDBD)

Overview

— Recent R&D history

— Disposal concept

— Safety and feasibility

• Crystalline Basement Reaction Analyses

— Observed conditions

— Fluid-rock reaction evaluations

• Summary & Conclusions
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I Deep Geological Disposal for Spent Nuclear Fuel

and High-Level Radioactive Waste

"There has been, for
decades, a worldwide
consensus in the
nuclear technical
community for
disposal through
geological isolation
of high-level waste
(HLW), including
spent nuclear fuel
(SNF)."

"Geological disposal
remains the only
long-term solution
available."

National Research Council, 2001
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Research and Development (R&D) at

Sandia National Laboratories (SNL)
• 2009 — 2012 (SNL internally funded)

— DBD Consortium with Mass. Inst. of Tech. (MIT), U. of Sheffield,
Industry (Brady et al. 2009, Arnold et al. 2011)

• 2012 — 2014 (U.S. DOE funded R&D)
— Preliminary generic siting, design, and post-closure PA focused on
SNF disposal (Arnold et al. 2013; Freeze et al. 2013)

— DOE (2014) recommended consideration of DBD of smaller DOE-
managed waste forms, such as Cs and Sr capsules

• 2014-2017 (U.S. DOE funded R&D)
— Lead Lab for a planned 5-year Deep Borehole Field Test (DBFT) to

evaluate the feasibility of siting and operating a DBD facility
• Collaboration with other National Labs: LANL, LBNL, ORNL, PNNL, INL

• DBFT to use "surrogate" waste packages (no radioactive waste)

• DOE Project stopped at end of FY2017

• Safety case (Freeze et al., 2019)

• SNL collaborating with other countries, IAEA
— Special Issue of Energies, 2019, 12(11)
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I Very Deep Borehole Disposal Concept
5

• Drill a borehole or array of boreholes into deep, competent rock
(e.g., crystalline basement)

• - 5,000 m total depth (TD)
• up to 17" (43 cm) diam. at TD

17" for SNF (1 PWR assembly)

8.5" for some HLW

• Emplacement Zone (EZ)

• Waste in lower N 2,000 m

• Seal Zone (SZ)

• Engineered seals and plugs

above EZ

1,000 m robust seal in
competent basement rock

* depths will be site and waste specific
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61 VDBD Concept Safety and Feasibility
(Post-Closure Hydrogeochemical Waste Isolation)

Identify adequate host rock with
sufficient depth and thickness

Deep basement systems can
be/have:
• hydrologically isolated from shallow

groundwater (low permeability and
long groundwater residence time)

• density stratification (more saline
brines underlying less saline fluids
• opposes upward flow

• geochemically reducing conditions
at depth

• limit the solubility and
enhance the sorption of many
radionuclides

Safety Case Details in Freeze et al., 2019

Borehole Seals and Disturbed Rock Zone (DRZ)
can be engineered/evolve to maintain a low-
permeability barrier, at least over the time scale of
thermally-induced upward flow

Waste is deep and isolated in basement rock
• well below typical depth of fresh groundwater
• with at least 1,000 m of basement rock (Seal Zone)

overlying the Emplacement Zone

Sassani et al., 2019 Goldschmidt, August 22, 2019



71 Observed Hydrogeochemical Profiles
Bulk Permeability Decreases with Depth
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8 Fluid-Rock Reaction Evaluations

• Evaluate mechanisms in the crystalline basement to
form deep, isolated brines
— Reaction path models for granite mineral reactions with
seawater
• Alteration mineralogy — hydrous phases (H20 sinks)
• Evolved brine compositions (major elements, Ca/Na, CI, Br)
• Assessed leachate compositions from Black Forest crystalline

basement rocks

— Fluid inclusion contributions (soluble salts) considered

• Conditions comparable to N 3-5 km depth
— Generic granite composition and sensitivity analyses
— Starting fluid compositions: seawater and dilute
groundwater

— —100 — 150°C, Psat
— PHREEQC reaction path calculations

Sassani et al., 2019 Goldschmidt, August 22, 2019



9 Hypothetical Granite

• Baseline Mineralogy (volume %)

— 20% Quartz; 40% K-feldspar; 15% Plagioclase (Albite);
9% Muscovite; 8% Biotite; and 8% Hornblende

• Represented as a 10 kg (3.8 L) Block with

— 33.3 moles Quartz; 14.4 moles K-feldspar; 5.7 moles
Albite; 2.2 moles Muscovite; 1.8 moles Biotite; 0.9
moles Hornblende

• Reacted with 0.1 L of Seawater at 100°C.

— This is a 38:1 rock:fluid ratio by volume, equivalent to
a rock with a fluid-filled porosity of r%j 3%

Sassani et al., 2019 Goldschmidt, August 22, 2019
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General Observations

• Calculated Generic Granite Hydrologic Alteration Results
Reaction creates Albite + K-feldspar + Chlorite + Laumontite + Brine
• Minor amounts (< 0.02 moles) of epidote, calcite, and gypsum
• Albite and K-feldspar masses increase substantially
• Almost all of the quartz is dissolved.

Fluid evolves to Ca-Na-Cl brine at pH of 6.8 (net water loss)
• Initial ionic strength of 0.6 increases upwards to > 5 molal
• The Ca/Na calculated for this brine is 1.55
• Low Mg concentration

• End-member Canadian Shield Brines from Frape et al. (1984) with
Highest Salt Contents of —240 — 325 g/L
— Have ionic strengths of 4.5 - 6.2
— 0.7 < Ca/Na < 3
— Low Mg concentration

• Sensitivity Cases
— Addition of anorthite (0.5 moles) to mineralogy
— Dilute groundwater instead of seawater
— Similar results to the baseline case

Sassani et al., 2019 Goldschmidt, August 22, 2019



Mineralogic and Solution Evolution
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Mineralogic and Porosity Evolution
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13 1 Summary and Conclusions
• A Number of Countries are Considering this Disposal Concept
• Fluid-Rock Reaction Appears able to Drive the

Evolution/lsolation of Crystalline Basement Systems
— Brine evolution from seawater and dilute groundwater
— Alteration mineralogy reducing already small porosity/permeability

• How Commonly are such Fluid Systems Isolated?
— May be fundamental/intrinsic process, but still evaluating

• Sensitivity of the PHREEQC calculations to
— Initial water chemistry
— Mineralogic variation
— More detailed consideration of activity coefficient effects

• Thermal gradient trajectories with depth
• Comparative rates of reaction and H20 diffusion at depth

— Continue to advance comparison of predicted/observed alteration
of both mineralogy and deep brine compositions

Sassani et al., 2019 Goldschmidt, August 22, 2019
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