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Outline

* Very Deep Borehole Disposal (VDBD)
Overview

— Recent R&D history
— Disposal concept
— Safety and feasibility

* Crystalline Basement Reaction Analyses
— Observed conditions

— Fluid-rock reaction evaluations

e Summary & Conclusions
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-1 Deep Geological Disposal for Spent Nuclear Fue
and High-Level Radioactive Waste

“There has been, for Deep geologic disposal has been planned

decades, a2 worldwide - since the 1950s

consensus in the
nuclear technical
community for
disposal through
geological isolation
of high-level waste
(HLW), including
spent nuclear fuel

(SNF).”

“Geological disposal
remains the only
long-term solution
available.”

Surface portion of final repository

Fuel pellet of Copper canister Cr/ystalline Underground portion of
National Research Council, 2001 TTTES HDNERE e WO
o
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Research and Development (R&D) at

Sandia National Laboratories (SNL)

2009 — 2012 (SNL internally funded)

— DBD Consortium with Mass. Inst. of Tech. (MIT), U. of Sheffield,
Industry (Brady et al. 2009, Arnold et al. 2011)

2012 — 2014 (U.S. DOE funded R&D)

— Preliminary generic siting, design, and post-closure PA focused on
SNF disposal (Arnold et al. 2013; Freeze et al. 2013)

— DOE (2014) recommended consideration of DBD of smaller DOE-
managed waste forms, such as Cs and Sr capsules

2014-2017 (U.S. DOE funded R&D)
— Lead Lab for a planned 5-year Deep Borehole Field Test (DBFT) to
evaluate the feasibility of siting and operating a DBD facility
* Collaboration with other National Labs: LANL, LBNL, ORNL, PNNL, INL
* DBFT to use “surrogate” waste packages (no radioactive waste)
* DOE Project stopped at end of FY2017
» Safety case (Freeze et al., 2019)

SNL collaborating with other countries, IAEA
— Special Issue of Energies, 2019, 12(11)
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Very Deep Borehole Disposal Concept [

= Drill a borehole or array of boreholes into deep, competent rock
(e.g., crystalline basement)
= ~5000m total depth (TD)

= uptol17” (43 cm)diam.atTD
= 17” for SNF (1 PWR assembly) EEss

i ———— s

| gurj Khalifa
i .?:;‘m, - Dubai

Uppersgal Zone

= >8.5” for some HLW 2,000 ™ EZZ?E?;’
= Emplacement Zone (EZ) 5,000 ™ )
= Waste in lower ~ 2,000 m | a0 =
= Seal Zone (S2) ) 500"
= Engineered seals and plugs
above EZ Robust Isolation from Biosphere

= >1,000 m“robust seal in

Natural Barriers — deep, low permeability host rock
competent basement rock

I
Engineered Barriers — redundant seals, possibility
* depths will be site and waste specific of long-lived waste forms and waste packages ‘
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.| VDBD Concept — Safety and Feasibility

(Post-Closure Hydrogeochemical Waste Isolation)

Identify adequate host rock with
sufficient depth and thickness

Deep basement systems can

be/have:

* hydrologically isolated from shallow
groundwater (low permeability and
long groundwater residence time)

* density stratification (more saline
brines underlying less saline fluids

» opposes upward flow
» geochemically reducing conditions
at depth
* limit the solubility and
enhance the sorption of many
radionuclides

Safety Case Details in Freeze et al., 2019

Borehole Seals and Disturbed Rock Zone (DRZ)
can be engineered/evolve to maintain a low-
permeability barrier, at least over the time scale of
thermally-induced upward flow
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» well below typical depth of fresh groundwater ------
« with at least 1,000 m of basement rock (Seal Zone)

Waste is deep and isolated in basement rock 7 ‘
overlying the Emplacement Zone

Sassani et al., 2019 Goldschmidt, August 22, 2019 I



‘ Observed Hydrogeochemical Profiles
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How Much of a Role Does Fluid-
Rock Reaction Play in Driving:

Increased Salinity?
Decreased Permeability ?

TDS (g/L)

1,000

100

[y
=]

Salinity Increases with Depth

Sassani et al., 2019 Goldschmidt, August 22, 2019

]
=@
s U = - *
C » m
|
o - L] .. =
:_ @ * m Canada
®
1
 —~ - & Finland
o
o met - Germany
.;- gl® e < Russia
Lt m
= b + Sweden
L] - f
LB 2 . O United Kingdom
=% * & West Europe
»
= *
L L]
500 1,000 1,500 2,000 2,500 3,000 3,500 4000 4,500
Depth {m) DeMaio and Bates (2013)




Fluid-Rock Reaction Evaluations

e Evaluate mechanisms in the crystalline basement to
form deep, isolated brines

— Reaction path models for granite mineral reactions with
seawater
* Alteration mineralogy — hydrous phases (H,O sinks)
» Evolved brine compositions (major elements, Ca/Na, Cl, Br)

* Assessed leachate compositions from Black Forest crystalline
basement rocks

— Fluid inclusion contributions (soluble salts) considered
* Conditions comparable to ~ 3-5 km depth
— Generic granite composition and sensitivity analyses

— Starting fluid compositions: seawater and dilute
groundwater

— ~100 - 150°C, P,
— PHREEQC reaction path calculations

Sassani et al., 2019 Goldschmidt, August 22, 2019
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Hypothetical Granite

* Baseline Mineralogy (volume %)

— 20% Quartz; 40% K-feldspar; 15% Plagioclase (Albite);
9% Muscovite; 8% Biotite; and 8% Hornblende

 Represented as a 10 kg (3.8 L) Block with

— 33.3 moles Quartz; 14.4 moles K-feldspar; 5.7 moles
Albite; 2.2 moles Muscovite; 1.8 moles Biotite; 0.9
moles Hornblende

e Reacted with 0.1 L of Seawater at 100°C.

— This is a 38:1 rock:fluid ratio by volume, equivalent to
a rock with a fluid-filled porosity of ~ 3%

Sassani et al., 2019 Goldschmidt, August 22, 2019
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General Observations

Calculated Generic Granite Hydrologic Alteration Results

— Reaction creates Albite + K-feldspar + Chlorite + Laumontite + Brine
* Minor amounts (< 0.02 moles) of epidote, calcite, and gypsum
* Albite and K-feldspar masses increase substantially
* Almost all of the quartz is dissolved.

— Fluid evolves to Ca-Na-Cl brine at pH of 6.8 (net water loss)

 Initial ionic strength of 0.6 increases upwards to > 5 molal
* The Ca/Na calculated for this brine is 1.55
* Low Mg concentration

End-member Canadian Shield Brines from Frape et al. (1984) with
Highest Salt Contents of ~240 - 325 g/L

— Have ionic strengths of 4.5 -6.2
— 0.7<Ca/Na<3
— Low Mg concentration
Sensitivity Cases
— Addition of anorthite (0.5 moles) to mineralogy
— Dilute groundwater instead of seawater
— Similar results to the baseline case

Sassani et al., 2019 Goldschmidt, August 22, 2019



~ Mineralogic and Solution Evolution

Moles Hydrous Alteration Minerals
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~ Mineralogic and Porosity Evolution
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- Summary and Conclusions

A Number of Countries are Considering this Disposal Concept

* Fluid-Rock Reaction Appears able to Drive the
Evolution/Isolation of Crystalline Basement Systems

— Brine evolution from seawater and dilute groundwater
— Alteration mineralogy reducing already small porosity/permeability

* How Commonly are such Fluid Systems Isolated?

— May be fundamental/intrinsic process, but still evaluating

» Sensitivity of the PHREEQC calculations to
— Initial water chemistry
— Mineralogic variation
— More detailed consideration of activity coefficient effects

* Thermal gradient trajectories with depth
* Comparative rates of reaction and H,O diffusion at depth

— Continue to advance comparison of predicted/observed alteration
of both mineralogy and deep brine compositions

Sassani et al., 2019 Goldschmidt, August 22, 2019
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