This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

This research was developed with funding from the Defense Advanced
Research Projects Agency (DARPA). The views, opinions and/or findings
expressed are those of the authors and should not be interpreted as
representing the official views or policies of the Department of Defense
or the U.S. Government

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

Towards a pulsed dead-zone free
gradiometer in Earth’s field

Kaleb Campbell

Sandia National Labs, University of New Mexico
Department of Physics and Astronomy

SAND2019- 9338C




20 40 60 80 100 120 1400 160 1BO 20 40 &0 B 100 120 140 160 180 200 I

2 | Motivation
Direct optical measurement of a magnetic 0
field gradient

* High common mode rejection “
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High sensitivity in the Earth’s magnetic field 20

Application: magnetoencephalography and
magnetocardiography
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*Henry Tang, Parametric Frequency Conversion of Resonance Radiation in Optically Pumped 3’Rb

Vapor. Phys. Rev. A 7,2010 (1973).

*Vishal Shah, System and Method for Measuring a Magnetic Gradient Field. Patent. US10088535 (2018)
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4 I More detailed description
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s | More detailed description
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¢ | More detailed description
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7 | More detailed description
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8 | More detailed description

QWP Fi//
Pump

795 nm

Carrier
780 nm

87Rb 87Rb
Microwave Radiation 30 torr N, 15 torr N,

Gradiometer Process
1) Pump atoms to the end-state ~
2) Apply a % pulse of magnetic energy to put the atoms in T’g

a coherent superposition %"
3) Send in Carrier light to generate a sideband in each cell
4) Beat the sidebands together to produce a beat note

Polarization
Selector: Sideband pass

\ 4

DaW

1N

Beat Note Signal

Time (ms)



9 | More detailed description
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In Earth’s Field —
10 I Results B
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* 87Rb cells with 30 torr and 15 torr N,

e All components are dropped-in design. Requires minimum alignment.
* Improved gradient cancellation coil design.




Evidence sideband is generated from coherence.

12
Microwave optical double resonance (MODR) signal oscillates at the Rabi frequency, Q. Sideband signal oscillates
at 2Q) on resonance. This shows the sidebands are due to coherence between the |1,1> and |2,2> states.
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Can we make the sensor more compact?

13
* Pump and Carrier along the same axis?

* Selection rules prohibit sideband generation on the [F=1, m; = 1> to [F=2, m¢ = 2> transition.

* Selection rules allow only Am = 0 transitions.
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Can we make the sensor more compact?
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Can we make the sensor more compact?

L Pump and Carrier along the same axis?
* Selection rules prohibit sideband generation on the [F=1, m; = 1> to [F=2, m¢ = 2> transition.
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Problems with this orientation

] 71'
« We can only pump the atoms to a single ground 1 2 Pulse
state, not an individual Zeeman sublevel F=1 ._ ._
* Reduced sideband amplitude my 2 _1 0 1 2
Solutions?
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7 I Case |:Ambient field perpendicular to the laser axis

We rotate the quantization axis, while maintaining R
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18
Compare adiabatic field switching to the old method of hyperfine pumping. B I
> Observe ~90% 1n the |2,2> state with optical pumping: expect improvement with lager B v
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v I Case 2: Ambient field parallel to the laser axis

We perform adiabatic rapid passage to transfer the population from the|2,2> state to the|1,1> state.

We use a magnetic field ramp to simplify microwave and cover both cells.
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20 | Field parallel to the laser axis

Compare adiabatic field switching to the old method of hyperfine pumping.

o Observe ARP from 2,2> to |1,1> B
o Use a single microwave synthesizer Vapor
o The percentage of the transfer uncertain cell |

o See a 4x improvement in sideband size on the |1,1> to |2,1> transition. Be
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,» | Comparison of four experiments

Quantization axis rotation currently working better than microwave ARP

* Why is this?
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» | Can we work towards dead-zone free operation!

Quantization axis rotation

Minimum field
B
Of—> _f_) > ! Vapor
1-2 = Jis1 2 o .
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1. Determine ambient field and direction using a field o
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2. Select scheme, microwave frequency, and direction

of B ARP with longitudinal field

3. Begin operation. om— =
> Continuous operation: S
1. Monitor signal size -
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23 | Conclusion
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*We work towards dead-zone free operation of the gradiometer, and show how we can make the setup
more compact with parallel pump and carrier.

*We detail a new gradiometer in Earth’s field based on the hyperfine splitting and demonstrate sensitivity |
as low as

*We experimentally show that our ARP and quantization axis rotation method produces sidebands 4-10X
larger in amplitude than sidebands from hyperfine pumping.

*Next steps:
* Understand sideband amplitude discrepancy between ARP and QA rotation methods.
* Continue working towards deadzone-free operation
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Towards a pulsed dead-zone free gradiometer in earth’s field

Kaleb Campbell'2, Ying-Ju Wang 3, Igor Savukov*, Peter D.D Schwindt!, Vishal Shah?
eSandia National Laboratory, 1515 Eubank SE, 87123 Albuquerque, USA

*Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Blvd NE, Albuquerque, USA
*QuSpin Inc., 331 S 104th St Unit 130, 80027 Louisville, USA

eLos Alamos National Laboratory, 87545 Los Alamos, USA

*Measuring ambient magnetic field gradients in a single device is an important problem in atomic magnetometry. We report on the development of an atomic gradiometer based on the
hyperfine splitting in two vapor cells of warm 87Rb atoms. By applying a 11/2 pulse of microwave magnetic energy, we maximize the coherence between disparate energy levels, producing a
sideband at the frequency of the coupling microwave radiation [1]. By beating together the sidebands from each vapor cell, we measure the beat frequency and thus the magnetic field
gradient between the cells [2]. For a practical gradiometer, it is important to be able to measure the gradient regardless of the direction of the ambient magnetic field B,, either
perdendicular or parallel to the laser beam propagation axis. For the perpendicular case, we first apply a magnetic field B collinear to the laser beams so that a circularly polarized Pump
beam at 795 nm can optically pump the atoms to the |F=2, m=2> state. To obey selection rules for sideband generation on the |1, 1> and |2, 2> states, we quickly turn off the pump, and
adiabatically turn off B, to rotate the quantization axis to be along B,. Then, the microwave 11/2 pulse is applied, the Carrier is applied, and the beat note of the sidebands is detected. For
the other case, if the ambient field is along the direction of the laser beams, we turn off the pump, and then use adiabatic rapid passage (ARP) to transfer the atomic population from the |2,
2> to the |1, 1> state, with the experiment proceeding as before. Experimental details for each case will be provided. We report preliminary noise sensitivities as low as 30fTHz*cm with
magnetic shielding and 65fTHz*cmfor measurements performed in the Earth’s field.
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Fig. 1 (Left) Experimental gradiometer setup with collinear Pump and Carrier beams [2]. For this case, we assume the ambient field, B4, is perpendicular to the Carrier direction. The sideband is orthogonally polarized to the carrier, so the
beat note can be picked off using a polarizing beam splitter (PBS). (Right) An example of the beat note data.
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