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2 I Motivation

Direct optical measurement of a magnetic
field gradient
• High common mode rejection

High sensitivity in the Earth's magnetic field

Application: magnetoencephalography and
magnetocardiography
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I Basic Idea — Magnetic Gradiometer
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4 More detailed description
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5 More detailed description

Pump
795 nm

QWP

Carrier
780 nm

Microwave Radiation

G radiometer Process

1) Pump atoms to the end-state

87Rb 87Rb
30 torr N2 15 torr N2

Polarization
Selector: Sideband pass

F'

F = 2

F 1

mF

PDY-Ny

2 1 0 1 2



6 More detailed description
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7 I More detailed description
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8 More detailed description
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9 I More detailed description
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10 Results

87Rb cells with 30 torr N2 and 15 torr N2

Separation: 4.4 cm

In Earth's Field
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Final Package Design for Phase I Prototype

* 87Rb cells with 30 torr and 15 torr N2

• All components are dropped-in design. Requires minimum alignment.
• Improved gradient cancellation coil design.



Evidence sideband is generated from coherence.

Microwave optical double resonance (MODR) signal oscillates at the Rabi frequency, Q. Sideband signal oscillates

at 20 on resonance. This shows the sidebands are due to coherence between the 11,1> and 12,2> states.
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13 1

Can we make the sensor more compact?
• Pump and Carrier along the same axis?

• Selection rules prohibit sideband generation on the F=1, mf = 1> to F=2, mf = 2> transition.

• Selection rules allow only AmF = 0 transitions.
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15 1
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Problems with this orientation
16

• We can only pump the atoms to a single ground
state, not an individual Zeeman sublevel

• Reduced sideband amplitude

Solutions?
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17 Case I:Ambient field perpendicular to the laser axis

We rotate the quantization axis, while maintaining

the atomic population in the 12,2> state.
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18 I Case I : Results

Compare adiabatic field switching to the old method of hyperfine pumping.

O Observe —90% in the 2,2> state with optical pumping: expect improvement with lager Bc Vapor
O Adiabatic switch does not degrade populations Cell
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19  Case 2:Ambient field parallel to the laser axis

• We perform adiabatic rapid passage to transfer the population from the12,2> state to thel 1,1> state.

• We use a magnetic field ramp to simplify microwave and cover both cells.
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20 I Field parallel to the laser axis

Compare adiabatic field switching to the old method of hyperfine pumping.

0 Observe ARP from 2,2> to 1,1>

O Use a single microwave synthesizer

O The percentage of the transfer uncertain

0 See a 4x improvement in sideband size on the 11,1> to 12,1> transition.
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21 I Comparison of four experiments

Quantization axis rotation currently working better than microwave ARP

• Why is this?
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22 I Can we work towards dead-zone free operation?
Quantization axis rotation
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23 I Conclusion

•We detail a new gradiometer in Earth's field based on the hyperfine splitting and demonstrate sensitivity

as low as 
20 fT

IIz*cm •

•We work towards dead-zone free operation of the gradiometer, and show how we can make the setup
more compact with parallel pump and carrier.

•We experimentally show that our ARP and quantization axis rotation method produces sidebands 4-10X
larger in amplitude than sidebands from hyperfine pumping.

•Next steps:
• Understand sideband amplitude discrepancy between ARP and QA rotation methods.

• Continue working towards deadzone-free operation
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25 I Abstract

Towards a pulsed dead-zone free gradiometer in earth's field
Kaleb Campbe111,2, Ying-Ju Wang 3, Igor Savukov4, Peter D.D Schwindtl, Vishal Shah3
•Sandia National Laboratory, 1515 Eubank SE, 87123 Albuquerque, USA

.Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Blvd NE, Albuquerque, USA

• QuSpin Mc., 331 S 104th St Unit 130, 80027 Louisville, USA

• Los Alamos National Laboratory, 87545 Los Alamos, USA

•Measuring ambient magnetic field gradients in a single device is an important problem in atomic magnetometry. We report on the development of an atomic gradiometer based on the
hyperfine splitting in two vapor cells of warm 87Rb atoms. By applying a Tr/2 pulse of microwave magnetic energy, we maximize the coherence between disparate energy levels, producing a
sideband at the frequency of the coupling microwave radiation [1]. By beating together the sidebands from each vapor cell, we measure the beat frequency and thus the magnetic field
gradient between the cells [2]. For a practical gradiometer, it is important to be able to measure the gradient regardless of the direction of the ambient magnetic field BA, either
perdendicular or parallel to the laser beam propagation axis. For the perpendicular case, we first apply a magnetic field Bc collinear to the laser beams so that a circularly polarized Pump
beam at 795 nm can optically pump the atoms to the 1F=2, mF=2> state. To obey selection rules for sideband generation on the 11, 1> and 12, 2> states, we quickly turn off the pump, and
adiabatically turn off Bc to rotate the quantization axis to be along BA. Then, the microwave Tr/2 pulse is applied, the Carrier is applied, and the beat note of the sidebands is detected. For
the other case, if the ambient field is along the direction of the laser beams, we turn off the pump, and then use adiabatic rapid passage (ARP) to transfer the atomic population from the 12,
2> to the 11, 1> state, with the experiment proceeding as before. Experimental details for each case will be provided. We report preliminary noise sensitivities as low as 30ITHecm with
magnetic shielding and 65ITHecmfor measurements performed in the Earth's field.
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Fig. 1 (Left) Experimental gradiometer setup with collinear Pump and Carrier beams [2]. For this case, we assume the ambient field, BA, is perpendicular to the Carrier direction. The sideband is orthogonally polarized to the carrier, so the

beat note can be picked off using a polarizing beam splitter (PBS). (Right) An example of the beat note data.

References
[1]Flenry Tang, Parametric Frequency Conversion of Resonance Radiation in Optically Pumped 87Rb Vapor. Phys. Rev. A 7, 2010 (1973).
[2] Vishal Shah, System and Method for Measuring a Magnetic Gradient Field. Patent. US10088535 (2018)


