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Introduction Facility Configuration

KDC10 lon Source Pt Fatigue testing

Specimen Drive Laser

" In-situ observation of materials evolution in extreme environments " Microscope is raised signiticantly above ground |evel
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allows for increased insight into the active mechanisms and temporal to allow 69" tandem beamline to enter the chamber

dependencies governing materials response and transformation via a custom WDS port adapter

Sandia National Laboratories (SNL) has previously developed the In-Situ " Beamline gate valves are interlocked With. SEM
lon Irradiation Transmission Electron Microscope (I°TEM) facility vacuum system, preventing accidental venting of

capable of studying the effects of radiation damage, high accelerator with routine sample exchanges
temperatures, mechanical stresses and other environmental variables = Custom WDS port adapter allows for tandem beam,

on microstructural transformation in thin-film specimens? KDC10 ion beam, and specimen drive laser to be

However, the I3’TEM fails to capture : e simultaneously incident on sample
mesoscale and Surface @ R \ | AN Figure 5: Custom WDS port ( v\
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TEM experiments in general are | |
known to be subject to various thin-

= High-cycle fatigue crack growth in a FIB-notched nanocrystalline Pt
tensile specimen using custom piezo fatigue stage
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Electron Mlcroscope (|3SE|V|) faC|I|ty P custom adapter utilizing the stock WDS port Figure 10: Automated image acquisition at notch for 4.2 x 10° cycle fatigue test to failure

to complement  the ISTEM
capabilities and enabling in-situ
materials studies at larger length

scales. Figure 1: Image of PSEM facility as installed in the
SNL lon Beam Laboratory

Future Work

Demonstration of Irradiation Capabilities He-Implantation & Pseudo Triple Beam Experiments

Initial Results

= Beams aligned using quartz targets and optical windows/camera " Potential for simultaneous heavy ion irradiation with D,+He ion
" |rradiation of zirconia waste form using 10 MeV Au** ions implantation

" |on irradiation causes initially rough, porous surface to evolve into plate-like structures
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Base Instrument — JEOL JSM-IT300HR/LV Irradiation Creep & Fatigue

= 30 kV FEG SEM w/ low vacuum capabilities
= |Largest available sample chamber

= Allows for insight into synergistic effects of irradiation, stress, and
temperature in nuclear environments

Irradiation Capabilities
= 6 MV Pelletron EN Tandem Accelerator
= SNICS Source

= Alphatross He Source Eirst Beam into SEM

Tungsten Fuzz in Fusion Reactor Diverters

= Monitor evolution of tungsten-based !
material surfaces under

& ;3 % light-ion irradiation at high temperatures
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= Duoplasmatron Proton Source on April 6, 2018

Figure 7: Surface structure evolution of zirconia waste form during in-situ ion irradiation

" Hiconex 834 Sputter Source Figure 2: fon beam induced luminescence In-situ Micro-Compression of Small Particles
(IBIL) on a quartz target in the SEM :
= KRI KDC10 1.2 keV Plasma lon Source ’

Mechanical Testing Capabilities
= Hysitron PI-85 SEM Picoindenter
= MTI Fullam Tensile Stage

Various User Experiments

= The IBSEM and IBTEM facilities are
available to external users through both

the Nuclear Science User Facilities and Figure 11: EBSD of ultrafine grained

Tungsten with high indexing rate

the Center for Integrated  (3000/s), and high confidence rating
Nanotechnologies.

= Kovar (Fe-Ni-Co) microparticles B P "
on Kovar substrate deposited al )
from laser ablation B i

= Allows for analysis of elastic

= Custom Piezo Fatigue Stage?®? _ T e
deformation and eventual yield
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Figure 9: (left) EBSD inverse pole figure (IPF) of annealed Ni sample, acquired N
at 3000 indexed patterns/second. (right) EDS map showing Co-rich U Ser FaC | | |t| eS
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