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Introduction

• In-situ observation of materials evolution in extreme environments
allows for increased insight into the active mechanisms and temporal

dependencies governing materials response and transformation

• Sandia National Laboratories (SNL) has previously developed the In-Situ
lon Irradiation Transmission Electron Microscope (I3TEM) facility

capable of studying the effects of radiation damage, high
temperatures, mechanical stresses and other environmental variables
on microstructural transformation in thin-film specimensl

• However, the I3TEM fails to capture
mesoscale and surface

transformation effects, and in-situ
TEM experiments in general are

known to be subject to various thin-
fi I m effects

• To this end, SNL has developed the
In-Situ lon Irradiation Scanning

Electron Microscope (I3SEM) facility
to complement the I3TEM

capabilities and enabling in-situ
materials studies at larger length
scales. Figure 1: Image of I3SEM facility as installed in the

SNL lon Beam Laboratory

Facility Description
Base Instrument JEOL JSM-IT300HR/LV

• 30 kV FEG SEM w/ low vacuum capabilities

• Largest available sample chamber

Irradiation Capabilities 

• 6 MV Pelletron EN Tandem Accelerator

• SNICS Source

• Alphatross He Source

• Duoplasmatron Proton Source

• Hiconex 834 Sputter Source

• KRI KDC10 1.2 keV Plasma lon Source

Mechanical Testing Capabilities 

• Hysitron PI-85 SEM Picoindenter

• MTI Fullam Tensile Stage

• Custom Piezo Fatigue Stage2/3

Analytical Capabilities 

• EDAX Octane Super Elite EDS Detector

• 70 mm2 detector, up to 400,000 cps

• EDAX Velocity Super EBSD Detector

• Up to 4,500 indexed points per second

Future Capabilities 

• High-power Specimen Drive Laser W 5

• 355, 532, 1064 nm wavelengths

• 8 ns pulses — continuous operation

• Up to 100 mJ power

• 3-axis straining stage

• Gatan SEM Cryostage
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Figure 2: lon beam induced luminescence

(IBIL) on a quartz target in the SEM

Figure 3: Custom piezo fatigue testing stage
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Figure 4: lon species and energies

run in beamline to date

Facility Configuration

• Microscope is raised significantly above ground level
to allow 69" tandem beamline to enter the chamber

via a custom WDS port adapter

• Beamline gate valves are interlocked with SEM
vacuum system, preventing accidental venting of

accelerator with routine sample exchanges

• Custom WDS port adapter allows for tandem beam,
KDC10 ion beam, and specimen drive laser to be

simultaneously incident on sample

Figure 5: Custom WDS port

adapter, shown with KDC10

ion source installed

• Additional custom feedthroughs
for SEM stage instrumentation,

conflate adapters, etc. result in
a highly flexible experimental
platform
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Figure 6: Schematic demonstrating simultaneous heavy

and light ion irradiation with laser heating enabled via a

custom adapter utilizing the stock WDS port

Initial Results
Demonstration of Irradiation Capabilities 

• Beams aligned using quartz targets and optical windows/camera

• Irradiation of zirconia waste form using 10 MeV Au4+ ions

• lon irradiation causes initially rough, porous surface to evolve into plate-like structures
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Figure 7: Surface structure evolution of zirconia waste form during in-situ ion irradiation

In-situ Micro-Compression of Small Particles 

• Kovar (Fe-Ni-Co) microparticles
on Kovar substrate deposited

from laser ablation

• Allows for analysis of elastic
deformation and eventual yield

and failure by shearing

Figure 8: Before (left) and after (right) images of Kovar

microparticle compression tests

Fast-Scan EDS and EBSD 

• High data acquisition rates allow for
monitoring of chemical and
crystallographic changes during
exposure to environmental stressors

Figure 9: (left) EBSD inverse pole figure (IPF) of annealed Ni sample, acquired

at 3000 indexed patterns/second. (right) EDS map showing Co-rich
precipitates in a sputtered Inconel 725 alloy

Initial Results (cont'd)

Pt Fatigue testing 

• High-cycle fatigue crack growth in a FIB-notched nanocrystalline Pt
tensile specimen using custom piezo fatigue stage

Ata

Cycles 0 0.1 x 106 2.1 x 106 4.0 x 106

% Life 0% 5% 50% 95%

Figure 10: Automated image acquisition at notch for 4.2 x 106 cycle fatigue test to failure

Future Work
He-Implantation & Pseudo Triple Beam Experiments 

• Potential for simultaneous heavy ion irradiation with D2+He ion
implantation

Irradiation Creep & Fatigue 

• Allows for insight into synergistic effects of irradiation, stress, and
temperature in nuclear environments

Tungsten Fuzz in Fusion Reactor Diverters 

• Monitor evolution of tungsten-based t
material surfaces under low-energy,

light-ion irradiation at high temperatures ,,"P

Various User Experiments 

• The I3SEM and I3TEM facilities are
available to external users through both

the Nuclear Science User Facilities and
the Center for Integrated

Nanotechnologies.
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Figure 11: EBSD of ultrafine grained

Tungsten with high indexing rate

(3000/s), and high confidence rating
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