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2 X-Ray CT scanning is indispensable for component analysis

At Sandia and partner sites, thousands of components
are imaged with X-Ray computed tomography (CT)

Non-destructive imaging allows detection of potential
defects

Current QA largely depends on human inspection, as
commercial software has not been developed for
anomaly detection in this space
0 1000's of CT slices are manually inspected for conformity
with product specification

o Can take days to analyze only a few centimeter-scale parts

Costs millions of dollars and months of effort to
diagnose component issues in testing

The 3D, non-destructive, high-resolution imaging that
CT offers comes with a high analysis price tag

Cross-section of a magnetic flyback from
X-Ray CT scan
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3 Recent advances in generative techniques hold the answer

Generative models produce more and more realistic
results every year

Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs) have recently been
applied to anomaly detection in various domains

- Retinal scans

o Cyber-physical systems

o Web traffic analysis

Faces generated by StyIeGAN. Karras et. al."A Style-Based
Generator Architecture for Generative Adversarial Networks"
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Category-conditioned images from BigGAN
Brock et. al."Large Scale GAN Training for High
Fidelity Natural image Synthesis



4 Training Generative Adversarial Networks (GANs)

System of 2 neural networks
Generator: objective function is to create images that the discriminator will label as "real"

Discriminator: objective function is to determine if an image is real or was generated

Adversarial training scheme produces a generator that has learned to model a distribution over
natural images

Random
noise

/
Training set

( 0

Generator

..

Discriminator

1

jAake image

FReal

LFake

Schematic of GAN training
From skymind.ai:A Beginner's Guide to GenerativeAdversarial
Networks (GANs)
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s The AnoGAN is an unsupervised deep learning system that can be
trained for anomaly detection

The generator is trained on only normal (i.e. non-anomalous) images and learns to model a
distribution over them

Inference involves generating a similar-looking image to a query image, and taking the difference to
highlight anomalies

Begin with a random latent vector, z0

Forward pass through generator to get an image, G (z0)

Calculate loss w.r.t query image, L(xa, zo)

Backprop to get new latent vector, z1

Repeat for r = 500 steps

Preprocessing

Training the GAN

Healthy data

Model

Identifying anomalies

1111111 MI( Model 114

Unseen data

Overview of AnoGAN system from Schlegl et. al."Unsupervised Anomaly Detection with
Generative Adversarial Networks to Guide Marker Discovery"
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6 We applied the AnoGAN method to CT scans of electronic components

Extracted regions known to have issues from scans of current viewing transformers and capacitors

Used axis-aligned CT scans of current sense transformers and capacitors
o Extracted regions-of-interest using known geometry of components

o Used traditional, statistics-based computer vision techniques
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7 Qualitative results are promising for current transformer

Real query image Generated image

Training details
• Trained on 2996 non-defective part images
• 70 epochs
• 3.25 hours to train, —10 seconds for inference
• 2 convolutional layered discriminator
• 2 de-convolutional layered generator

Anomaly detection

Undesirable solder
ball highlighted in red
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8 How does the latent dimension affect reconstruction?

Latent dimension (A): dimensionality of the random vector input to the generator

The generator has to learn a mapping function f RA R256 x256

A larger value of A allows a more complex mapping to be learned, more degrees of freedom for the domain

Random
noise

Training set

Generator
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Discriminator
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GAN diagram.The random noise refers to a
latent variable

Reconstructions of trained AnoGAN with different latent
dimensions. Left: I 0-d latent space, Right: 30-d latent space
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9 Structural Similarity improves with increasing latent dimension

Latent dimension vs. SSIM between
Predicted Images and Query Images from Test Set
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A larger latent space allows the generator to create a more complex and
expressive mapping from latent vectors to the space of images
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io An improved metric is needed to distinguish anomalous from non-
anomalous images

Anomaly score from original AnoGAN paper:

A (xq, G (zr)) = (1 — A) (E ix q — G (4) l) + A(Y, l f (x.q) — f (G (zr)) l)

E 1.xq — G(zr)1 : Residual loss, measures absolute image differences
Z, If (xq) — f (G (zr))1 : Discriminator loss, measures difference in discriminator layers

AnoGAN paper achieves 0.89 AUC from ROC between false positive rate and true positive rate



An improved metric is needed to distinguish anomalous from non-
anomalous images

Anomaly score from original AnoGAN paper:

A (x q, G (zr)) = (1 — A) (E ix q — G (4) l) + (Y, I f q) — f (G (zr))1)

— G (zr)I : Residual loss, measures absolute image differences

Z, If (x q) — f (G (zr))1 : Discriminator loss, measures difference in discriminator layers

Latent dimension vs. Anomaly Score between
Predicted images and Query images from Test Set
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I 2 Many potential research directions could reach a solution

Improve generative model training

Often, training runs suffered from mode collapse, resulting in
poor images

Use an architecture with inverse latent vector to image
mapping

o Avoid costly backpropagation at inference

0 As in Schlegl et. al. "f-AnoGAN: Fast unsupervised anomaly
detection with generative adversarial networks"

Improved metric for distinguishing anomalous images from
normal ones

Investigate effect of tuning k in anomaly score function

Invent a new function for discovering fine-grained anomalies

Use uncertainty quantification techniques for qualifying generated
images that may be unrealistic
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