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Table 3. Parameters for Greeley Simulation 

Variable Value Unit 

𝑄 5 ⋅108  kg/yr 

tfinal 3 yr 

𝜎𝑛  −6.0 ⋅107  Pa 

𝑃( 𝑡 = 0, 𝑥)  3 ⋅107  Pa 

𝑘𝐷𝐹𝑁 ,𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒  3.6 ⋅10−14    m2  

𝑘𝐷𝐹𝑁,𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡  10-17 m2  

𝑘𝐸𝑃𝑀 ,𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡  4.2 ⋅10−15    m2  

𝑘𝑚𝑢𝑑  10−17  m2  

𝑘𝑠𝑠  4 ⋅10−14  m2  

𝜙𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡  0.05  

𝜙𝑚𝑢𝑑  0.2  

𝜙𝑠𝑠  0.25  

𝛽𝑚 ,𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡  10-9 Pa-1 

𝛽𝑚 ,𝑚𝑢𝑑  10-8 Pa-1 

𝛽𝑚 ,𝑠𝑠  10-8 Pa-1 

𝛽𝑓  4.4 ⋅10−10  Pa-1 

𝜇 8.9 ⋅10−10  Pa-s 

𝑏𝑝  50 m 

Since the fractures and their contribution to permeability 

are the most uncertain part of the system, we set up the 

DFNM simulation first.  The parameters are shown in 

Table 3 and the conceptual model is shown in Figure 4.  

There are no-flux boundaries on the sides and bottom of 

the domain, and the top has a prescribed pressure 

boundary condition of 30 MPa.  For simplicity, we 

assume that the initial pressure and the normal stress on 

all fractures are 30 MPa and 60 MPa respectively, but in 

future work these values can easily be specified as 
functions of space. Injection takes place for three years 

into the center of the injection interval.  We randomly 

generate 500 fractures using the 2D Levy Lee algorithm 

(Clemo and Smith, 1997).  These fractures are extended 

for the full width of the domain in the y direction, which 

was an assumption of convenience.  More sophisticated 

three-dimensional fracture network generation algorithms 

can be used in the future.  Since these fractures represent 

the largest basement fractures, we use the following 

Bandis parameters to yield larger aperture than in 

previous sections: 𝐴 = 10−11  m/Pa, 𝑏𝑚𝑖𝑛 = 2 ⋅10
−4  m, 

and 𝑏𝑚𝑎𝑥 = 4 ⋅10
−4  m.  The resulting fracture aperture 

at the initial pressure and in-situ stress is 0.28 mm, which 

assigns a permeability of 3.6 ⋅10−14  m2 for our grid 

spacing.  The parameters for the sandstone injection 

formation and the mudstone confining layer are based 

primarily on Brown et al. (2017). 

Since we want a meaningful comparison between the 

DFNM and EPM models, we use a numerical 

permeameter test to find the effective permeability of the 

basement.  This involves assigning a pressure gradient 

across the basement in the x direction with no flux 

boundaries everywhere else and waiting until steady state 

when the inlet and outlet flow rates are equal.  From the 

flow rates and pressure gradient, the effective 

permeability in the x direction can be calculated.  This is 

repeated in the z direction, and we find that the effective 

permeability was 4.2 ⋅10−15  m2 in both directions.  This 

isotropic value is used for the basement in the EPM 

simulation. 

 

Fig. 5. Greeley slice plots of pressure increase for (a) EPM, (b) 

static-aperture DFNM and (c) evolving-aperture DFNM.  The 

change in pressure of 0.07 MPa indicated by red colors shows 

the region at or above the critical pressure.  The horizontal black 

line indicates the top of the crystalline basement, and the 

vertical grey line indicates the injecting portion of the well.  The 

EPM has the most homogeneous response while the DFNMs 

have more heterogeneous responses.  For the evolving-aperture 

DFNM, the critical pressure reaches depths that are greater than 

the other two simulations (see red arrow).  The yellow arrow 

points to a dead-end fracture that is more highly pressurized 

than it was in the static-fracture DFNM, and the green arrow 
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DOE research is developing the physical basis and tools needed 

to manage pressure effectively to increase recovery efficiency. 

• Slower drawdown rates can lead to improved recovery 

efficiency in gas production from shale 

 Anecdotal evidence from field experiences 

• Yet, slower drawdown requires an operator to forego 

high near-term production for higher overall production. 

• DOE research will help operators to assess the risk-

benefit for managing pressure. 

 Uncertain site-specific characteristics/behavior (risk) 

 Increased recovery with slower drawdown (benefit) 

Matrix 
Processes 

Physically Realistic Synthetic Data 
(Forecasts of pressure-dependent behavior with 

an accuracy sufficient to optimize operations) 

Fracture 
Processes 

+ 

+ 
→ 

Fast, Accurate 
Reservoir Modeling 

Fast, Accurate Predictions of the Behavior of Fractured Reservoirs  

Los Alamos National Laboratory 
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By coupling fast, accurate physics with machine learning, 

DOE is producing science-based platforms any operator can use. 

Los Alamos National Laboratory 

Machine 
Learning for 

Reservoir 
Management 

Fast, Accurate 
Reservoir 
Modeling 

Site-Specific 
Matrix 

Processes 

Site-Specific 
Fracture 

Processes 

Physically Realistic Synthetic Data 

Optimized 
Decisions 

Strategy:  Physically realistic, site-specific synthetic data can be used in combination with 

available site data to confidently extrapolate production different operational decisions. 

Physical behavior of system described as 

a combination of fracture transport and 

matrix-scale transport 

• Theoretical development and 

experimental characterization occurring 

through FE-30 investments 

Fast, accurate reservoir-scale simulations 

using discrete-fracture network platform in 

combination with graph-based models & 

machine learning 

• Initial development with LDRD 

• Extension to gas in shales through FE-30 

Machine learning applied to scenarios 

library that augments limited/no field data 

with synthetic for real-time optimization 

• Platform development through FE-30 
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DOE’s research portfolio is targeting hydrocarbon transport at 

multiple scales, with the goal of increasing recovery efficiency. 

After the initial flush, transport at small scales 

dominates the production from fractured shales. DOE is using its national labs to build the 

fundamental science on production from shales. 

 

This foundation is being used to develop a new 

tools for simulating the production of fractured 

shales based on the physics of transport from 

pore-scale to reservoir-scale. 

 

Applying these tools is leading to new strategies 

for increasing ultimate recovery (e.g., pressure 

management). 

Los Alamos National Laboratory 
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Case Study Using Data from the MSEEL-I Site 

the 

Increasing both the peak and tail are important for increasing recovery. 
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DOE’s research has led to new, fast & accurate platforms for 

predicting gas production from fractured shales . 

By combining graph-based models with full-physics discrete-fracture models, hydrocarbon production can 

be predicted accurately with orders of magnitude increases in speed.  Full physics model includes matrix-

transport and fracture-transport processes.  LANL’s dfnWorks is an open source software package. 
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DOE’s Technology Commercialization Fund is helping to couple 

dfnWorks and graph-based models to Golder’s FracMan platform 
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Using data from the MSEEL-I site to calibrate our physics-based 

model, we have early results on pressure management. 

Next year, DOE hopes to provide quantitative insights for basins/plays. 

We have demonstrated the physical basis for pressure management using data from DOE’s MSEEL-I 

field laboratory.  Next year, we anticipate quantitative insights for both MSEEL & other basins/plays. 
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Optimum Drawdown 

For MSEEL-I, there appears to be an optimum 

drawdown rate that could increase recovery 

significantly over a rapid drawdown. 
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We have shown that both mechanical and chemical processes in 

the matrix can negatively impact production. 

Based on our current work, we can only provide qualitative insights to operators 
today.  An additional year of work would lead to quantitative guidelines on critical 
drawdown rates  and chemical reactions that could damage reservoirs in different 
basins/plays. 


