This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-9324C

Proteus: A DLT-Agnostic Emulation
and Analysis Framework

Russell Van Dam Thien-Nam Dinh

Christopher Cordi Gregory Jacobus

Nicholas Pattengale Steven Elliott

— — Qi

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
1 Administration under contract DE-NA0003525.

Background

Distributed Ledger Technologies (DLT) have seen exponential growth
° 2,400 listed cryptocurrencies
° Varied trust models: permissionless, permissioned, federated
° Varied data structures: blockchain, DAG, HashGraph

Existing analysis tools
o Simulation — simbit, VIBES
> Emulation — SherlockFog
> Hybrid — Shadow Bitcoin plugin
o Physical Testbed — Bitcoin-NG, TrustChain, BLOCKBENCH, Grid’5000

Contributions

DLT-Agnostic emulation framework
° Abstract away infrastructure common to all DLTs

> Minimize user effort for implementing new DLTs

° Provide standardized tools for analysis
Extend capabilities of underlying FIREWHEEL orchestration platform

Demonstrated use case: Ethereum 51% attack

FIREWHEEL

Experiment orchestration tool for managing emulated networks
Focus on supporting well-structured experiments at a large scale

Specific capabilities:
> Programmatic definition of experiment topologies
> VM deployment across compute clusters

° Management and execution of in-experiment events

o

Centralized collection, analysis, and display of experimental data

(o]

Repeatability

FIREWHEEL

FIREWHEEL Architecture

Model components
° Collection of files for modeling experiment components

° Primary interface for building applications like Proteus

Control
° Translate model components into graph representation

° Launch experiment using configurable emulation tools

VM Resource Handler

> Manage scheduled experiment events

° Redirect output for logging and analysis

Networking

° Provide emulated switches and routers
> Configure parameters such as bandwidth and latency

FIREWHEEL Python Virtual Environment

Model Components

Control
Experiment Graph

Experiment Launching

System VM Resource Manager

QEMU/KVM/

OVS Simulator

Proteus Architecture

Agent—based modeling paradigm Proteus Framework

> Compose simple behaviors to create Aa e
complex topologies | I

o Intuitive mapping to real-world agent types Agent 1 p—
. . ((e.g. Customer)x | Messaging) ((e.g. Vendor) ,.
Extensible by design Policy . " policy
> Hasy access to common model components Peering — Peering

> Well-defined process to add new DLTs _ Physical __ Physical)

User Implementation

’ Adapter -

Adapter

External Software

| Client Client

| Y

Distributed Ledger

What Your Emulation Can Do For You

Model components
o Physical — physical, data-link, and networking layer topologies
° Peering — peer-to-peer ovetrlay topology

° Policy — DLT-level actions (e.g. send tx or propose a new block)

Messaging system
o Coordinated launch and teardown

o Information transfer between Agents

° Global synchronization of Agents

Analysis

o (Generic system metrics

o DL T-level metrics

Mine Block

Balance >
x?

Send Random Txns

What You Can Do For Your Emulation

Model components

° Client — process for installing and configuring DL'T
software

> Adapter — hooks for translating abstract Proteus
instructions into DI T actions

Blocky development tool
° Terminal application to aid adapter development
o Launch small-scale FIREWHEEL test environment

° Incrementally develop and test adapter implementation

- Blocky the Proteus development tool

DLT Name ethereum
Adapter File: /opt/firewheel/proteus/ethereum/model/adapter/vm_resou
Config File:
Setup
reset get networkID get balance
push get _peers get _applicationID
pcap start add peer propose block
pcap stop remove_peer send_transaction <s
handle_custom <d
L Control Peering Policy
[X] [1 Agent 0
[1 Agent 1 [1 Agent 1
[1 Agent 2 [1 Agent 2
Source Target —
Agent © [2019-06-21T19:43:42.665425] Adapter response: enode://
[2019-06-21T19:46:42.768947] Adapter response: 0.0
[2019-06-21T19:47:04.445256] Adapter response: 0x59ac32
Agent 1 [2019-06-21T19:43:42.750157] Adapter response: enode://
[2019-06-21T19:46:42.821195] Adapter response: 0.0
Agent 2 [2019-06-21T19:43:42.678733] Adapter response: enode://
[2019-06-21T19:46:42.799080] Adapter response: 0.0
Logs —

Status J

0K

Case Study: 51% Attack

We emulated a 51% attack on a private Ethereum network

We split the network into two partitions: a malicious partition with 60% of the network hash power,
and an honest partition with the other 40%.

This network topology facilitates a double spend and allows the 51% attack to occur.

Figure 3: Example initial P2P topology of the 51% attack.

0 | Experiment Setup

2,000 Ubuntu 16.04 Server VMs running go-etherum

20 FIREWHEEL nodes
o Dual socket Intel® Xeon® E5-v4 2.10GHz CPUs

° 512GB Memory

o LLocal solid-state drives

> 100 Gigabit Ethernet

Results

During the 51% attack, we collected metrics about network hash power and block times as seen by
the honest partition.

A large drop in hash power can be seen between the start of the attack (22:28) and the end (22:39).
Block time is approximately the inverse.

Hash Rate Block Time
20
= 400,000 =
-~ N
< o 15
9 E
£ 300,000 £
s ¥
< 8 10
g @
S 200,000 :
S °
o g S
g 100,000 E
=
0 0
22:30:00 22:35:00 22:40:00 e300 283500 22AGN0

Time Time

Results

We also collected metrics about reorganization depth, as seen by the honest partition.

There is a clear spike in reorganization depth when the 51% attack completes, indicating success.

Reorganization Depth

50

IS
o

Reorg Depth
N w
o o

=3
o

o

AL
22:30:00 22:35:00 22:40:00

Time

Future Work

Cross-DLT analytics to detect common attacks
Developing adapters for non-cryptocurrency DLTs and assessing their compatibility.

Incorporating real-world P2P topologies in Proteus and evaluating how that impacts the indicators
of 51% attacks.

Conclusion

Proteus is an agent-based framework for conducting rapid, emulated analysis of DLTs.
Proteus allows for quick development of DLT clients and adapters.

The results of the 51% attack case study validate Proteus’ utility in assessing the security guarantees
of DLTs.

(suonssan®

