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Background

Distributed Ledger Technologies (DLT) have seen exponential growth
° 2,400 listed cryptocurrencies
° Varied trust models: permissionless, permissioned, federated
° Varied data structures: blockchain, DAG, HashGraph

Existing analysis tools
o Simulation — simbit, VIBES
> Emulation — SherlockFog
> Hybrid — Shadow Bitcoin plugin
o Physical Testbed — Bitcoin-NG, TrustChain, BLOCKBENCH, Grid’5000




Contributions

DLT-Agnostic emulation framework
° Abstract away infrastructure common to all DLTs

> Minimize user effort for implementing new DLTs

° Provide standardized tools for analysis
Extend capabilities of underlying FIREWHEEL orchestration platform

Demonstrated use case: Ethereum 51% attack




FIREWHEEL

Experiment orchestration tool for managing emulated networks
Focus on supporting well-structured experiments at a large scale

Specific capabilities:
> Programmatic definition of experiment topologies
> VM deployment across compute clusters

° Management and execution of in-experiment events

o

Centralized collection, analysis, and display of experimental data
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FIREWHEEL Architecture

Model components
° Collection of files for modeling experiment components

° Primary interface for building applications like Proteus

Control
° Translate model components into graph representation

° Launch experiment using configurable emulation tools

VM Resource Handler

> Manage scheduled experiment events

° Redirect output for logging and analysis

Networking

° Provide emulated switches and routers
> Configure parameters such as bandwidth and latency

FIREWHEEL Python Virtual Environment

Model Components

Control
Experiment Graph

Experiment Launching

System VM Resource Manager

QEMU/KVM/

OVS Simulator




Proteus Architecture

Agent—based modeling paradigm Proteus Framework
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o Intuitive mapping to real-world agent types Agent 1 p—
. . ((e.g. Customer)x | Messaging ) ( (e.g. Vendor) ,.
Extensible by design Policy . " policy
> Hasy access to common model components Peering — Peering

> Well-defined process to add new DLTs \_ Physical __ Physical )

User Implementation

’ Adapter -

Adapter

External Software

| Client Client

| Y

Distributed Ledger




What Your Emulation Can Do For You

Model components
o Physical — physical, data-link, and networking layer topologies
° Peering — peer-to-peer ovetrlay topology

° Policy — DLT-level actions (e.g. send tx or propose a new block)

Messaging system
o Coordinated launch and teardown

o Information transfer between Agents

° Global synchronization of Agents

Analysis

o (Generic system metrics

o DL T-level metrics
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What You Can Do For Your Emulation

Model components

° Client — process for installing and configuring DL'T
software

> Adapter — hooks for translating abstract Proteus
instructions into DI T actions

Blocky development tool
° Terminal application to aid adapter development
o Launch small-scale FIREWHEEL test environment

° Incrementally develop and test adapter implementation

- Blocky the Proteus development tool

DLT Name ethereum
Adapter File: /opt/firewheel/proteus/ethereum/model/adapter/vm_resou
Config File:
Setup
reset get networkID get balance
push get _peers get _applicationID
pcap start add peer propose block
pcap stop remove_peer send_transaction <s
handle_custom <d
L Control Peering Policy
[X] [ 1 Agent 0
[ 1 Agent 1 [ 1 Agent 1
[ 1 Agent 2 [ 1 Agent 2
Source Target —
Agent © [2019-06-21T19:43:42.665425] Adapter response: enode://
[2019-06-21T19:46:42.768947] Adapter response: 0.0
[2019-06-21T19:47:04.445256] Adapter response: 0x59ac32
Agent 1 [2019-06-21T19:43:42.750157] Adapter response: enode://
[2019-06-21T19:46:42.821195] Adapter response: 0.0
Agent 2 [2019-06-21T19:43:42.678733] Adapter response: enode://
[2019-06-21T19:46:42.799080] Adapter response: 0.0
Logs —

Status J

0K




Case Study: 51% Attack

We emulated a 51% attack on a private Ethereum network

We split the network into two partitions: a malicious partition with 60% of the network hash power,
and an honest partition with the other 40%.

This network topology facilitates a double spend and allows the 51% attack to occur.

Figure 3: Example initial P2P topology of the 51% attack.




0 | Experiment Setup

2,000 Ubuntu 16.04 Server VMs running go-etherum

20 FIREWHEEL nodes
o Dual socket Intel® Xeon® E5-v4 2.10GHz CPUs

° 512GB Memory

o LLocal solid-state drives

> 100 Gigabit Ethernet




Results

During the 51% attack, we collected metrics about network hash power and block times as seen by
the honest partition.

A large drop in hash power can be seen between the start of the attack (22:28) and the end (22:39).
Block time is approximately the inverse.
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Results

We also collected metrics about reorganization depth, as seen by the honest partition.

There is a clear spike in reorganization depth when the 51% attack completes, indicating success.
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Future Work

Cross-DLT analytics to detect common attacks
Developing adapters for non-cryptocurrency DLTs and assessing their compatibility.

Incorporating real-world P2P topologies in Proteus and evaluating how that impacts the indicators
of 51% attacks.




Conclusion

Proteus is an agent-based framework for conducting rapid, emulated analysis of DLTs.
Proteus allows for quick development of DLT clients and adapters.

The results of the 51% attack case study validate Proteus’ utility in assessing the security guarantees
of DLTs.
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