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2 Outline
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o Data Generation and Format
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3 Problem you are trying to solve

With the proliferation of nations using space to extend their footprint of influence,
the US Government has a need to monitor space assets to understand the
related communications behavior. The focus of this work is to characterize and
identify signals from various emitters that are either space or ground-based.

In this presentation, we will discuss two components to this research:

• Modulation Classification using CNN's

• Sequence Learning / Behavior Characterization using CRF's
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4 Modulation Classification

• Upon detecting a signal burst, the first step to adequately determining and
characterizing signal type and move closer to finding any patterns in data is to
determine the modulation scheme

o Frequency Shift Keying (FSK)

o Phase Shift Keying (PSK)

o Quadrature Amplitude Modulation (QAM)

• With successful classification of modulation type, we can attempt to
demodulate any data being transmitted and continue with identifying and
characterizing any patterns in the data itself

• This builds on work completed in the Blind Signal Characterization (BSC) LDRD
(2015)



5 Modulation Classification

• Semi-supervised ML with regularization via Mean-Teacher

• 6-layer CNN (7/2-kernel)

o Conv/BN/MaxPool/Relu

o Filters 7x1x32 -> 2x1x64 -> 2x1x128 -> 2x1x256 -> 2x1x512 -> 2x1x1024

o AvgPool (8) -> FC (1024->15)

Mi
1D CNN Layers with vaiying filter/kernel size

Pi ►

Ai ►

Fully
Connected

Layer

Softmax
Layer

Network to classify a modulation example, Mi
Pwelch signal input, Pi
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6 Modulation Classification

• 1 4 modulation types, each with constant baud rate, frequency, and SNR split
into FSK, PSK, and QAM

o Modulation breakdown for 3-cat initial classifier

• Frequency-Shift Keying (FSK), Phase-Shift Keying (PSK), Quadrature
Amplitude Modulation (QAM)

o Modulation breakdown for 2nd level training

• FSK - MSKs vs FSK vs CPM/2CPFSK

• PSK - BPSK vs QPSK vs 8PSK vs OQPSK

• QAM - 16QAM vs 64QAM vs 256QAM

• Power, Angle, Frequency, and magnitude values used for input to CNN

• 20% held out test set and validation set each



7 Example Modulation plots
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8 Modulation Classification Results

3-category top level classifier

• 99.7% accuracy
o FSK vs. PSK vs. QAM

Level 2 FSK Classifier

• 96.9% accuracy

Level 2 PSK Classifier

• 78.9% accuracy

Level 2 QAM Classifier

• 88.5% accuracy
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9 Pattern / Behavior Characterization

Data used: Synthetic Data

- Simple synthetic data developed for MLSPPI ExEx LDRD
(completed last year) that generates signal bursts representative
of RF signal traffic and protocols

- Contains several known patterns, such as pre-determined
preambles, sync patterns, etc... that we can detect, find, and
characterize in the symbol sequence of the decoded traffic

Single
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Data
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CRC
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10 Pattern / Behavior Characterization

• Leverages prior work from the Wireless Protocol Informatics (WPI)
LDRD (2014), the MLSPPI ExEx LDRD (2018), and from several other
related projects to identify raw patterns in the demodulated data
stream (Sequitur, T-Patterns, Word2Vec)
o Sequitur is a compression algorithm, used to find recurring patterns. T-
Patterns are patterns with a statistically significant temporal
dependence, and Word2Vec groups patterns with similar contexts

o These can now be used as features for sequence learning and
behavior characterization

• This research is working on taking this a step further and learning
underlying latent structure in the communications using
Conditional Random Fields (CRFs)



11 Pattern / Behavior Characterization

• The latent structure in a CRF can be used to learn categories for
identified patterns (preambles vs sync vs crc, etc...), as well as
more abstract higher-level behaviors like activities

• CRFs are discriminative models that use conditional probabilities
for activations and can utilize a general graphical structure for
latent variables.

Place type

Activity

Local nidente

Image source: http://robots.stanford.edu/isrr-papers/final/final-42.pdf



12 CRF Autoencoders

• Existing literature has looked at using CRF Autoencoders for
unsupervised learning of structure (Ammar, NIPS 2014)

• This takes the CRF and adds a reconstruction layer to determine
an estimate of observation using conditional probabilities 1
dependent on latent activations

Utilizes gradient-based learning (for encoding) and
Expectation-Maximization (for reconstruction),
switching between the two every 1-2 steps. See
image for a simple version of this structure shown as
a factor graph, taken from (Ammar, NIPS 2014)

• This work is still ongoing ti

Source: http://www.cs.cmu.edu/-wammar/pubs/nips2014.pdf

1
1



1 3 Conclusion

• Every communication system, unidirectional or bidirectional, uses
a predefined protocol to describe the signaling scheme, message
construction, and encoding.

• These common protocols and modulation schemes create
patterns that can be used to classify and characterize which
protocols are used, as well as behaviors of interest. Doing this
successfully helps in identifying and characterizing transmitting
participants in a digital conversation, and allows sufficient
information to be captured for further data demodulation and
study while massively reducing data requirements.
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