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Motivation

• Parameterized dynamical systems
are ubiquitous in science and
engineering

• Approximate models are often employed to reduce cost

• Quantifying errors in approximate solutions is the
objective of this work
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Full-Order Model

• Work focuses on the FOM ODE

dx

Tit = f (x; tt)

• Parameters, p e D C

• Time discretization: FOM ODE FOM OAE

rn(xn; xn-1,p) = 0, n = 1, , Nt

• Discrete residual, rn
• Discrete approximation, xn x(tn)
• Number of time-step instances, Nt

• Often interested in a scalar quantity of interest (Qol):

sn g(xn(p); tn, p), n = 0, , Nt7
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Approximate Models

• Generate a sequence of approximate solutions

kn, n = 0, , Nt

• We assume the existence of a prolongation operator p that
maps to the FOM state space

k-n p(jin) xn

• Approximate Qols

n = 0, , Nt

• Challenge: The approximate model contains error

Orxi := fl 112

SI; := sn —
4 26
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Traditional Approaches for Error Quantification

• A posteriori error bounds

Six'(P) C h Il rn (1(n(P); n ( P) 1-1) II2 -F'Y'51)('-1(1-t)

• Provide guaranteed bounds
• Lack of sharpness/inaccuracy
• Difficulty to compute

• Dual weighted residuals

• First order approximation for Qol errors
• Challenging to implement
• Can be expensive

• Motivates the use of a posteriori error models
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A posteriori Error Models for Static Systems

• Build a feature-error mapping via a regression function

'-I.[Approximate Model 

6
Feature  ► Regression Error

Function Approx.

= /1.(P)

• Existing work on error models:
El Kennedy and O'Hagan (2001): Model discrepancy
• Features: p = p
• Uses a GP regression function
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A posteriori Error Models for Static Systems

• Build a feature-error mapping via a regression function

'—I.[Approximate Model 

6
Feature  ► Regression —1"' Error

Engineering Approx.

• Existing work on error models:

▪ Kennedy and O'Hagan (2001): Model discrepancy
▪ Drohmann and Carlberg (2015): Reduced-order modeling

error surrogates approach (ROMES)
• Freno and Carlberg (2019): Machine-learning error models

(MLEM)

6/26
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A posteriori Error Models for Dynamic Systems

—{it Approximate Model

2
Nt

l(pn)

• Physically inconsistent
• Error depends on the history of the system

_

arX1(it) (in(P); i(n-1(P)) it)M2 -Y(51x1-1(itt)
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Existing work on Error Modeling for Dynamical
Systems

• Model discrepancy approach with time-local Error Models

• e.g., Pagani, Manzoni, and Quarteroni (2017)
• Constructs a separate regression function for each point in

time
• Can lead to accurate error models
• Can not generalize to new time intervals
• Uses only the parameters as input features

• Error Modeling via Machine Learning (EMML)

• Trehan, Carlberg, and Durlofsky (2017)
• Constructs regression functions with time-lagged input

features
• Considers past states as inputs
• Considers high dimension regression functions
• Prediction at each time-step is independent of previous

prediction
8/26
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Time-Series Machine Learning Error Models

• We seek to address these short comings:

• Inaccuracy + cost of dual weighted residuals/a posteriori
bounds

• Physically inconsistency of existing error models for
dynamical systems

• We develop a new error modeling framework for dynamical
systems

• Time Series Machine Learning Error Models (T-MLEM)
• Inspired from a posteriori error analysis and dual weighted

residuals
• Physically consistent
• Easy to implement
• Accurate
• Requires data

• Extends the MLEM framework to dynamical systems
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Time Series Machine Learning Error Models
(T-MLEM)

alt Approximate Model x-- 1—{
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Sn 1-(pn hn),

hn = g(pn hn-1)
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T-MLEM

—{it Approximate Model • • •

X
— 2 • • •

• • •

• T-MLEM introduces latent variables
• Governed by recursive relation
• Allows T-MLEM to capture recursive error
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• T-MLEM requires:

• Feature engineering
• Specification of regression functions
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T-MLEM

Approximate Model 1-0.

j2

• T-MLEM requires:

• Feature engineering
• Specification of regression functions
• Training the regression function model

11 26



Sandia

O 
Naval
Labaratones

Introduction

Feature Engineering

—{µ Approximate Model

1 1

♦

I
2

• Need to define candidate features, pn

• We examine features inspired by a posteriori error bounds
and dual weighted residuals
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Feature Engineering

(5; < n (sin ; 
X
n —1

4)112+ 76'7-1

• Feature 1: Parameters, tt
• Used in the Kennedy and

approach
• Free to compute
• Not informative of error
• Low-dimensional

O'Hagan "model discrepancy"
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x
-n-1

14)112 +76,7-1

• Feature 1: Parameters,

• Feature 2: Residual norm, 11FrI(U)112
• Directly appears in a posteriori error bounds
• Low-dimensinal
• Only informative of magnitude (not sign)

12 26



0 $andia
National
Lahoratones

Introduction

Numerical
Experiments

Feature Engineering

(5,( < rn (sin; 
X
- n-1

4)112 + 76'7-1

• Feature 1: Parameters, it

• Feature 2: Residual norm, 111.114012
• Feature 3: Residual, in (µ)

• Directly appears in a posteriori error bounds
• High dimensional input feature
• May require many data for training
• Expensive to compute
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Feature Engineering

< n n -n-1
77 P. x

• Feature 1: Parameters, it

• Feature 2: Residual norm, Ilin(1-)112

• Feature 3: Residual, in (11,)

• Feature 4: Residual principal components,
in(µ) 0rT (in(p)

• Same advantageous of the full residual but is lower
dimensional

• Requires less data for training
• Still expensive to compute
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Feature Engineering

< n n -n-1
77 P. x 2 +

• Feature 1: Parameters, µ,

• Feature 2: Residual norm, Ilin(11)112
• Feature 3: Residual, in(µ)

• Feature 4: Residual principal components, i-n(µ)

• Feature 5: Residual gappy principal components,

V(P) := [POd+P(in(P) i).
• Same advantages of Feature 5, but is cheaper to compute!
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(S,n, < n n n-1
77 P. x

• Feature 1: Parameters, µ

• Feature 2: Residual norm, Ilin(1-)112
• Feature 3: Residual, in (II)

• Feature 4: Residual principal components, ([)

• Feature 5: Residual gappy principal components, "ign(µ)

• Feature 6: Sampled residual, Pin(µ,)

• Same advantages of Feature 6
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Feature Engineering

;lc < 
n n n-1

77 P. x

• Feature 1: Parameters, it

• Feature 2: Residual norm, Ilin(1-)112
• Feature 3: Residual, in (U)

• Feature 4: Residual principal components,

• Feature 5: Residual gappy principal components, "ign(µ)

• Feature 6: Sampled residual, Pin(µ)

• Methods can be combined to create many candidate
feature sets

12 26



Sandia

O 
Naval
Labaratones

Introduction

NL1nrencal
E:perinierts

12 26

Feature Engineering

;lc < 
n n n —1

77 P. x tt)L

• Feature 1: Parameters, /1

• Feature 2: Residual norm, Ilin(P)112
• Feature 3: Residual, in(µ)

• Feature 4: Residual principal components, (A)

• Feature 5: Residual gappy principal components, i-gn(µ)

• Feature 6: Sampled residual, Pin(p,)

• Methods can be combined to create many candidate
feature sets

• Takeaway: We consider residual-based features
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/-It1 Approximate Model

• Now need to specify the regression functions f and g
• Provides the mapping from input features to the error

• Examine three categories of methods
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—{tt Approximate Model

I
2 • •

15n 1-(pn hn),

hn g(pn hn-1)
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Category 3 Models

—itit Approximate Model

1
2

• Examine three Category 3 models:
• Latent Auto-regressive model: f and g are linear
• Recurrent neural network: f and g are non-linear
• Long short-term memory network: f and g are non-linear
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Category 2 Models

—{µ Approximate Model

XNc

• Set latent state to be equal to previous prediction
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Sn i(pn hn),
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Category 2 Models

-I{ji Approximate Model

• Examine two Category 2 models:
• Auto-regressive model: f is linear
• Integrated Neural Network: f is a neural network
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-{µ Approximate Model
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Category 1 Models

—I{[t Approximate Model

• Turn off the latent state

• Turn off recursion

X 
Nt

16 26



0 $andia
National
Laboratones

Introduction

Numerical
Experiments

Category 1 Models

—{µ Approximate Model

fil

Sn = l(pn)
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Category 1 Models

i—ift Approximate Model

61

02

2

• Examine two Category 1 models:
• kNN: f is a k-nearest neighbors method
• ANN: f is a neural network
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Model Summary

• Category 1:

• No rercursive dynamics

• Category 2:

• Latent state of dimension 1

hn S n-1

• Linear recursive dynamics

• Category 3:

• Arbitrary latent state dimension
• Linear/non-linear recursive dynamics

17 26
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Data Generation

• Lastly, we generate the training data, validation data,
and testing data
• Training data: data used to train (optimize the models)
• Validation data: independent data-set used for

hyper-parameter and model selection
• Test data: independent data-set used to assess the

performance of the models

• These data are generated by executing the FOM and
approximate models for samples of the parameter instances
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Numerical Example: ROM of Shallow Water
Equations

• Solve the shallow water equations parameterized by

• Gravity: µl = [3. 9]
• Transient water height: 112 = [0.05,0.2]

an a a
at + ax  (hu)-F y(hv) = 0,

hu a 2 1 2+ + ) + (huv) = 0,
at  ax ay
hv a
at 
+ —ax(n.v)+ —(nv2 1 2+ 

2 
-1,21,) = o,ay 

h(t = 0) = h0 -Fpi2e(0-1)2±(Y-1)2, u0 = 0, tr0 = 0,

• FOM is a 4th order discontinuous Galerkin scheme

• Contains 12k degrees of freedom
• Approximate model is a ROM of dimension K = 78

20 26
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Regression Results

• Prediction for normed state error, Sx" = xn 112

GP

1.0
kNN

ANN -
0.5

ARX - 0.0

ANN-I - -0.5sEt'

LARX -
-1.0 0

RNN -

LSTM -
aim_• -1.5

0 0 0
CNI C51 C51
00 00 00

11 11 11
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Regression Results

• Prediction for normed state error, Sx" = xn 112

GP -

kNN

ANN

ARX

ANN-I

LARX

RNN

LSTM
—NEM—

c>

oo
ctq

<E.

[
t
Og
(
n
,
 =
 8
20

)]
 

[i
i,
Pi
(
ns
 —
 8
20

)]
 

1.0

0.5

0.0

—1.0 0-9

—1.5
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Regression Results

• Next assess the impact of dataset size:

ioo

10-1

10-2
16 24 32 40

Parameter training set size, 1Da.,aal

22 26 • RNN and LSTM again perform best
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Regression Results

• Error response as a function of time:

0.003

0.002 -
-4,-.

Pr
ed

ic
te

d 
E
n
o
 

0.001 -

0.000 -

—0.001

—0.002

IDtrainl = 40

Error response 6,.

10
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Summary

• Outlined an error modeling framework for approximate
solutions to parameterized dynamical systems

• Framework comprises an extension of Ref.[1] to dynamical
systems

• Key components of framework:

11 Feature Engineering: Engineer features from classical
error analysis techniques

El Recursive regression function construction: Constructs
a recursive regression method that provides the
feature—response mapping

• Numerical experiments demonstrate:

• The LSTM network yielded the best performance
• Residual-based terms were the best performing features
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