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Motivation

Introduction m Parameterized dynamical systems
are ubiquitous in science and
engineering

m Approximate models are often employed to reduce cost

m Quantifying errors in approximate solutions is the
objective of this work
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m Work focuses on the FOM ODE
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o = fxin)

m Parameters, p € D C RNw

Introduction

m Time discretization: FOM ODE — FOM OAE
r"(x™ x"1 p) =0, n=1,...,N;
m Discrete residual, r"

m Discrete approximation, x" ~ x(t")
m Number of time-step instances, N,

m Often interested in a scalar quantity of interest (Qol):

s"ip— g(x"(p);t",m), n=0,..., N,
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Approximate Models

m Generate a sequence of approximate solutions
Introduction

f(",n:O,...,Nt

m We assume the existence of a prolongation operator p that
maps to the FOM state space

m Approximate Qols
§",n:O,...,Nt
m Challenge: The approximate model contains error

Ox = [Ix" = X"[|; # 0
dg =s"—-5"#0
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Traditional Approaches for Error Quantification

m A posteriori error bounds

Introduction
1 - - »
Ox(p) < 4 (| (" (m)i 2" (), ) 5 + 0% (1)

m Provide guaranteed bounds
m Lack of sharpness/inaccuracy
m Difficulty to compute
m Dual weighted residuals
m First order approximation for Qol errors
m Challenging to implement
m Can be expensive

m Motivates the use of a posteriori error models
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A posteriori Error Models for Static Systems

m Build a feature-error mapping via a regression function

y Approximate Model 53
Feature Regressmn Errnr
Engineering Function Approx.

5 = f(p)
m Existing work on error models:

Kennedy and O’Hagan (2001): Model discrepancy

m Features: p=p
m Uses a GP regression function

Introduction
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A posteriori Error Models for Static Systems

m Build a feature-error mapping via a regression function

y Approximate Model 53
Feature Regressmn Errnr
Engineering Function Approx.

m Existing work on error models:
Kennedy and O'Hagan (2001): Model discrepancy
Drohmann and Carlberg (2015): Reduced-order modeling
error surrogates approach (ROMES)
Freno and Carlberg (2019): Machine-learning error models
(MLEM)

Introduction
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A posteriori Error Models for Dynamic Systems

Introduction 1 Approximate Model i:l, S ‘,:ch‘

m Physically inconsistent
m Error depends on the history of the system

%) = % e (%7 (h): 277 (1) ) [ + 705 ()




(=M Existing work on Error Modeling for Dynamical

Laboratories

Systems

m Model discrepancy approach with time-local Error Models

R m e.g., Pagani, Manzoni, and Quarteroni (2017)
m Constructs a separate regression function for each point in
time

m Can lead to accurate error models
m Can not generalize to new time intervals
m Uses only the parameters as input features

m Error Modeling via Machine Learning (EMML)

m Trehan, Carlberg, and Durlofsky (2017)

m Constructs regression functions with time-lagged input
features

m Considers past states as inputs

m Considers high dimension regression functions

m Prediction at each time-step is independent of previous
prediction
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Time-Series Machine Learning Error Models

m We seek to address these short comings:

Intfodiictio m Inaccuracy + cost of dual weighted residuals/a posteriori

bounds
Physically inconsistency of existing error models for
dynamical systems

m We develop a new error modeling framework for dynamical
systems

Time Series Machine Learning Error Models (T-MLEM)
Inspired from a posteriori error analysis and dual weighted
residuals

Physically consistent

Easy to implement

Accurate

Requires data

m Extends the MLEM framework to dynamical systems
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T-MLEM
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Approximate Model
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Introduction

m T-MLEM introduces latent variables
m Governed by recursive relation
m Allows T-MLEM to capture recursive error
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Introduction

m T-MLEM requires:
m Feature engineering
m Specification of regression functions
m Training the regression function model
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Feature Engineering

Introduction

m Need to define candidate features, p”

m We examine features inspired by a posteriori error bounds
and dual weighted residuals
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Feature Engineering

Introduction 5),(7 S % Hrn ()?nr 5'(17—1’ l‘l') H2 + ,753_1

m Feature 1: Parameters, p
m Used in the Kennedy and O’Hagan “model discrepancy”
approach
m Free to compute
m Not informative of error
m Low-dimensional
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Introduction 5),(7 S % Hrn ()?nr 5'(17—1’ l‘l') H2 + ,753_1

m Feature 1: Parameters, p
m Feature 2: Residual norm, ||F"(u)|/,

m Directly appears in a posteriori error bounds
m Low-dimensinal
m Only informative of magnitude (not sign)
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Feature Engineering

Introduction 5),(7 S % Hrn ()?nr 5'(17—1’ l‘l') H2 + ,753_1

m Feature 1: Parameters, u
m Feature 2: Residual norm, ||F"(u)|/,

m Feature 3: Residual, ()

m Directly appears in a posteriori error bounds
m High dimensional input feature

m May require many data for training

m Expensive to compute
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Feature Engineering

Introduction 5;’ S % Hrn ()?nr 5'(17—1’ l"l') H2 + ,75;’_1

Feature 1: Parameters, u
Feature 2: Residual norm, |[F"(u)|/,
Feature 3: Residual, F"(u)

Feature 4: Residual principal components,
P() == ®] (F(u) — F)
m Same advantageous of the full residual but is lower
dimensional
m Requires less data for training
m Still expensive to compute
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Feature Engineering

Introduction 5; S % Hrn ()?n; )?n—17 M) H2 + ,75;1—1

Feature 1: Parameters, p
Feature 2: Residual norm, ||F"(u)||,
Feature 3: Residual, #"(u)

Feature 4: Residual principal components, #"(u)

Feature 5: Residual gappy principal components,
tg(p) = [PO]TP(F"(1) — F).

m Same advantages of Feature 5, but is cheaper to compute!
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Feature Engineering

Introduction 5; S % Hrn ()?n; )?n—17 M) H2 + ,75;1—1

Feature 1: Parameters, u

Feature 2: Residual norm, |[F"(u)|/,

Feature 3: Residual, F"(u)

Feature 4: Residual principal components, 7"(u)
Feature 5: Residual gappy principal components, 7,(u)

Feature 6: Sampled residual, PF" (1)
m Same advantages of Feature 6
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Feature 1: Parameters, u

Feature 2: Residual norm, |[F"(u)|/,

Feature 3: Residual, F"(u)

Feature 4: Residual principal components, 7"(u)
Feature 5: Residual gappy principal components, 7,(u)

Feature 6: Sampled residual, PF" (1)

m Methods can be combined to create many candidate
feature sets
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Feature Engineering

Introduction 5; S % Hrn ()?n; )?n—17 le) H2 + ’75)?_1

Feature 1: Parameters, p
Feature 2: Residual norm,

P2
Feature 3: Residual, F"(u)

Feature 4: Residual principal components, 7"(u)
Feature 5: Residual gappy principal components, 77 (1)

Feature 6: Sampled residual, P¥"(u)

m Methods can be combined to create many candidate
feature sets

m Takeaway: We consider residual-based features
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Introduction

5

m Now need to specify the regression functions f and g
m Provides the mapping from input features to the error

m Examine three categories of methods
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1% Approximate Model
Introduction

m Examine three Category 3 models:
m Latent Auto-regressive model: f and g are linear
m Recurrent neural network: f and g are non-linear
m Long short-term memory network: f and g are non-linear
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Introduction 12 Approximate Model

m Set latent state to be equal to previous prediction
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Category 2 Models
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Category 2 Models

H Approximate Model
Introduction

m Examine two Category 2 models:
m Auto-regressive model: f is linear
m Integrated Neural Network: f is a neural network
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; -1 = N,
Introduction 12 Approximate Model B s g o
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Category 1 Models

Introduction

m Turn off the latent state

m Turn off recursion
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Category 1 Models

Introduction 12 Approximate Model
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Category 1 Models

73 Approximate Model il, — o
Introduction

o P L
' '
I PN

0 O
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m Examine two Category 1 models:
m kNN: fA is a k-nearest neighbors method
m ANN: f is a neural network
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Model Summary

m Category 1:
Intiadction m No rercursive dynamics

m Category 2:
m Latent state of dimension 1

h" =51
m Linear recursive dynamics

m Category 3:

m Arbitrary latent state dimension
m Linear/non-linear recursive dynamics
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Data Generation

Introduction

m Lastly, we generate the training data, validation data,
and testing data
m Training data: data used to train (optimize the models)
m Validation data: independent data-set used for
hyper-parameter and model selection
m Test data: independent data-set used to assess the
performance of the models

m These data are generated by executing the FOM and
approximate models for samples of the parameter instances
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Q=M Numerical Example: ROM of Shallow Water
Equations

m Solve the shallow water equations parameterized by

m Gravity: p = [3,9]
Numerical m Transient water height: p, = [0.05,0.2]

Experiments

Oh a 12}

P Ly + 2 () =,

ot Ox dy
Ohu ]
— + —(hu + = M1h2)+ — (huv) =0,
ot oy

O () + (WP 4 ) =0
ot _ Ay v Ml ’

2
h(t = 0) = hg + pupe* ™ +Hy=1? ,up =0,v =0,

m FOM is a 4th order discontinuous Galerkin scheme

m Contains 12k degrees of freedom
m Approximate model is a ROM of dimension K = 78
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Regression Results

m Prediction for normed state error, 63 = [|X" — x"||,

Numerical GF D

Experiments

kNN 1
ANN{ e
ARX A [ 0.0
ANN-I ~05
LARX 1
RNN 1

712
820)]
820)]

[”7”’;“2]

Q. (n,
[u,f‘y(n,
[, P7(n = 820)]
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Regression Results

m Prediction for normed state error, 63 = [|X" — x"||,

Numerical GP -I:|

Experiments 1.0
kNN
ANN o
] =
ARX [ 0.0 2
ANN-I 052
LARX 0 ®
RNN -
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3 Il Il I
ey S s
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1 Y
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Regression Results

m Prediction for normed state error, 63 = [|X" — x"||,

Numerical GP -I:|

Experiments 1.0
kNN
ANNI I o
=
ARX | 0.0 2
ANN-I 052
LARXH 7]_0;50
RNN i
L2 =% B B
= = & Q &
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ey S s
% Ry
1 Y




Sandia
National
Laboratories

Regression Results

m Prediction for normed state error, 63 = [|X" — x"||,

Numerical GP -I:|

Experiments

1.0
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ANN o
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Regression Results

m Prediction for normed state error, 63 = [|X" — x"||,

Numerical GP -I:|

Experiments
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Regression Results

m Prediction for normed state error, 63 = [|X" — x"||,

Numerical GP -I:|

Experiments

kNN
ANN o
=
ARX | 0.0 2
ANN-I 052
LARX 0B
RNN .
LSTM K
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Regression Results

m Prediction for normed state error, 63 = [|X" — x"||,

Numerical GP -I:|

Experiments

kNN
ANN o
=
ARX 08 B
ANN-I 052
LARX 0 ®
RNN .
LSTM K
= B OB &
= = & Q &
- = o] (o ¢} o]
o I I
& <L§ [
1 Y




Sandia
National
Laboratories

Numerical
Experiments

Regression Results

m Next assess the impact of dataset size:

10[] 4

10721— T r ! :
8 16 24 32 40
Parameter training set size, |Dyqin|

® RNN and LSTM again perform best
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Regression Results

m Error response as a function of time:

Numerical 0.003 1
Experiments
0.002 1
0.001 A

0.000 A

Predicted Error, o y

—0.001 1

—0.002

|Dtrain| =40

Error response dx.
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Numerical
Experiments

Summary

m Outlined an error modeling framework for approximate
solutions to parameterized dynamical systems
m Framework comprises an extension of Ref.[1] to dynamical
systems
m Key components of framework:
Feature Engineering: Engineer features from classical
error analysis techniques
Recursive regression function construction: Constructs
a recursive regression method that provides the
feature—response mapping
m Numerical experiments demonstrate:

m The LSTM network yielded the best performance
m Residual-based terms were the best performing features
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