
Low-Power Deep Learning Inference using the SpiNNaker
Neuromorphic Platform

Craig M. Vineyard, Ryan Dellana, James B. Aimone, Fredrick Rothganger, William M. Severa
Sandia National Laboratories

Albuquerque, NM

cmviney@sandia.gov,rdellan@sandia.gov,jbaimon@sandia.gov,frothga@sandia.gov,wmsever@sandia.gov

ABSTRACT
With the successes deep neural networks have achieved across a
range of applications, researchers have been exploring computa-
tional architectures to more efficiently execute their operation. In
addition, to the prevalent role of graphics processing units (GPUs),
many accelerator architectures have emerged. Neuromorphic is one
such particular approach which takes inspiration from the brain
to guide the computational principles of the architecture including
varying level of biological realism. In this paper we present results
on using the SpiNNaker neuromorphic platform (48-chip model)
for deep learning neural network inference. We use the Sandia
National Laboratories developed Whetstone spiking deep learning
library to train deep multi-layer perceptrons and convolutional
neural networks suitable for the spiking substrate on the neural
hardware architecture. By using the massively parallel nature of
SpiNNaker, we are able to achieve, under certain network topolo-
gies, substantial network tiling and consequentially impressive
inference throughput. Such high-throughput systems may have
eventual application in remote sensing applications where large
images need to be chipped, scanned, and processed quickly. Ad-
ditionally, we explore complex topologies that push the limits of
the SpiNNaker routing hardware and investigate how that impacts
mapping software-implemented networks to on-hardware instanti-
ations.

1 INTRODUCTION & BACKGROUND
Historical advances in computational capabilities have been enabled
by trends such as Moore's Law and Dennard Scaling. With these
scaling laws coming to an end, rather than exponential advances in
manufacturing capability furthering general purpose architectures,
instead specialized architectures are being considered. In particu-
lar, the growing popularity of deep neural networks and machine
learning is fueling research into accelerators better suited for these
workloads [2].

With the proliferation of machine learning accelerators and neu-
romorphic architectures, there has been a lag in the development
of the software stack to interface to these emerging devices. CUDA
serves as an application programming interface to Nvidia GPUs [11],
however many other architectures lack this capability necessitating
lower level programming efforts to make use of the specialized hard-
ware. Efforts are emerging to try and address this need. For example,
the Neural Network Exchange Format provides a specification in
which emerging architectures can interface to by providing parsing
and compilation tools specific to their architecture [5]. Similarly,
Glow developed by Facebook strives to provide an intermediate
representation of high level machine learning representations for
which hardware targets can support [10].

However, these and other emerging efforts are not presently tar-
geting spiking neuromoprhic hardware, and additionally the deep
neural network (DNN) algorithms themselves need to either learn
spiking representations or be converted to map on to neuromorphic
hardware.

Developed by Sandia National Laboratories, Whetstone is a
method for training deep artificial neural networks for binary com-
munication [14]. The Whetstone method, offers an iterative ap-
proach that integrates well with a variety of neural network topolo-
gies and integrates with standard deep learning libraries (namely
Keras on Tensorflow). The Whetstone method is illustrated in Fig. 1.
This approach enables rapid prototyping and training of deep spik-
ing neural networks that are neuromorphic-ready at a variety of
scaled and complexities. Using Whetstone to target neuromorphic
architectures, in this article we present results exploring the efficacy
of using the University of Manchester SpiNNaker architecture for
low-power deep learning inference.

•im

mm

Define Model tt

(Keras)

Standard I
Training

S arp
Layer 1

• • •

Sharpen
Layer N

Output WI
(Keras)

4114.-4.4,

WHETSTONE 

Evaluate
Performance

e Evalual
Performanc

Figure 1: Illustration of the Whetstone Method

SAND2019-9132C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



2 APPROACH

The SpiNNaker architecture is a scalable, energy-efficient, mas-
sively parallel computing architecture inspired by the function and
structure of the brain [3, 4]. The fundamental unit of the SpiN-
Naker architecture is a multicore System-on-Chip comprised of
lightweight ARM968 processor cores each with local instruction
and data memory, and a packet router. Multi-cast routing via ad-
dress event representation both allows cores within each chip to
communicate as well as chips within the overarching architecture.
A communication mesh allows spikes from individual neurons to
route to any other neuron in the system. For our work here, we
have used a 48-node (864 core) SpiNNaker board.

For mapping applications onto the SpiNNaker infrastructure,
low level C or Python code may be used as well as high-level neural
description languages such as PyNN [1] and Nengo [15]. SpyN-
Naker provides a software package for simulating PyNN defined
networks on the SpiNNaker platform [9]. Alternatively, here we
explore using the Whetstone method to generate binary-activation
quantized ANNs as an additional approach to mapping onto the
SpiNNaker neuromorphic platform complementing the other exist-
ing approaches.

2.1 Mapping

Given the available software interfaces to the SpiNNaker platform,
we chose to implement Whetstone networks using SpyNNaker. This
interface provides a higher-level abstraction compared to the C in-
terface, and we expect, going forward, that SpyNNaker will provide
greater interoperability with a range of peripheral libraries (data
loaders, spiking sensors, etc.). Given the flexibility of connections,
most components and parameters of the Whetstone network map
directly to the SpyNNaker network. However, as follows are three
settings which must be addressesd to map Whetstone networks
onto SpiNNaker:

(1) Bias Most deep neural network use a bias that helps improve
separability away from the origin. In a Whetstone network,
the bias is trained as with any other weight parameter. How-
ever, in practice, the bias is 'rolled' into the threshold of the
neuron. For SpyNNaker networks, this implies a different
threshold for each neuron, which by default, would require
each neuron to be on separate cores. We alleviate this prob-
lem by either (a) training a network without bias or (b) using
a separate neuron to relay a bias signal (via weights). This
signal allows the neurons to each have an effective threshold
without changing the threshold parameter.

(2) Neuron Types Whetstone networks require very simple
neurons, essentially perceptrons. In contrast, SpyNNaker
(and SpiNNaker) can support much more complicated neu-
ron models. We use the IF_curr_delta neuron model as our
baseline, however, we have also created a custom neuron
type IFO_curr_delta which instantaneously decays. While
relaxing biological realism, the IFO_curr_delta neuron is ad-
vantageous in enabling faster firing rates and can also enable
denser neuron packing on the SpiNNaker board.

(3) Weight Precision Since Whetstone uses standard deep learn-
ing methods, the weights are floating point parameters (ei-
ther 16-bit or 32-bit). However, most neuromorphic platforms

2

use some fixed-point representation; SpiNNaker uses Q15.16
integer values. As such, we decided to investigate the im-
pact of reduced fixed-point precision weights. In general, we
have seen that Whetstone networks remain effective, with
essentially no loss in performance, down to Q4.8.

2.2 From Tensors to SpiNNaker

The Whetstone-based mapping from tensor representations to neu-
ron represenations involves six transformations, with a seventh
(time-division multiplexing) optional step. Figure 2 illustrates these
transformation steps, each of which is described subsequently.

(1) Binary Quantizing Activations Spiking neural networks
are a form of event-based computing. A point of interesec-
tion between the event-based paradigm and traditional ar-
tificial neural networks is the binary-activation quantized
ANN, which allows activations to be interpreted as firing
events. Whetstone [13] produces such binary-ANNs by grad-
ual modification (i.e. sharpening) of activation functions
during training until they become binary threshold gates. In
order to allow convergence this process is performed layer-
wise bottom-up using an adaptive algorithm which seeks to
minimize increases in training loss.
One stipulation of Whetstone is that activation functions be
"sharpenable", meaning they support a parameter that can be
used to set the steepness of their nonlinearity in a continuous
space between the original function and the step/threshold
function. Currently, this means using either a parameterized
sigmoid or a bounded-RELU (bRELU). bRELUs have been
shown to be as effective or nearly as effective as RELUs, and
the bounded range allows them to be easily converted to a
spiking threshold function [7]. We parameterize our units as

1, if xi )6

hafi = (xi — a)I(fi — a) if a xi < f3 (1)

0, if xi < a,

and assert that lfl — 0.51 = la — 0.51. With a = 0 and ß = 1,
hafi is a standard bounded RELU. However, as a —> 0.5,
ha,13 —> h. After an initial period of conventional training,
the spiking bRELUs are sharpened by reducing the difference
between a and )3. The rate and method of convergence can
be determined either prior to training or dynamically during
training.

(2) Binary Coding Inputs and Outputs Recoding floating-
point inputs and outputs to binary-representations can present
challenges. Consider a 1-hot output encoding scheme often
used in classification. A 1-hot encoding is used for label-
ing classes where an object belonging to class k of n total
classes is represented by an n-length vector with 1 at the
k'th element and the remainder being O. This 0-1 encoding
is actually a form of unary coding but is compatible with
binary activation neurons. In practice some output neurons
do not survive the Whetstone sharpening process (a.k.a. the
"dead node" problem). This issue is addressed by using re-
dundant output neurons for each class. During training, the
number of active neurons for a given class is summed to
produce the logits which pass into a softmax layer to allow



Keras Activations must
be sharpenable.

Pre-train -70-1
Whetstone- -
ready model

Keras+
L  WHETSTONE

Quantize to I
Binary '-

Activations

w

float
32

Example: Recoding Input

Split input weight

Reduced-precision
binary-coded input

► w 6

1:11111111

Binary-Code I 2
Inputs/Ouputs I - -

NewBias (hi ) G-77-:.e)(bi-p)+p

NewWeights(w1) = wi(c+E)

+r
8+E 

P

Y P

xzz

Merge Batch ;71
Normalization I- -
into Weights
and Biases

Split Tensors 1 4
into Point I- -I
Neurons

Biases moved to connection weights

Triggersnect
Bias Neuron

Remove
Biases by
converting
them to

weights of
connections
from a bias

neuron

o

yeeDw 4/

6

7

Obsolute time when neuron firesPropagation
delay

(Optional) l 6
Reduce firing - -
Simultaneity
with time-
division

multiplexing
using

propagation
delays

Figure 2: Illustration of each of the steps applied in our ap-
proach to using the Whetstone method to map neural net-
works onto to the SpiNNaker neuromorphic architecture.
Steps 0-5 are essential with step 6 optional. Not shown is
a seventh step of mapping the resulting Whetstone com-
patible SpiNNaker network onto the hardware through the
PyNN interface.

for the use of cross-entropy loss functions. After training,
the softmax layer is discarded and replaced with a majority

3

(3)

voting scheme which operates directly on the binary n-hot
outputs.
To approximate continuous outputs, a more direct unary
coding scheme can be used, where the percentage of active
neurons can be mapped to some floating point range such
as [0.0, 1.0], though this is innefficient. Input encoding is
actually much easier, since it allows floating point inputs to
be recoded directly to binary by splitting out the single input
channel into bit channels, and logarithmically partitioning
the original weights over the binary input dimensions in
decreasing order of bit significance.
Removing Batch Normalization The use of batch nor-
malization has been shown to significantly improve stability
during Whetstone sharpening [13]. However, in Tensorflow
batch normalization layers persist after training, taking the
form of linear transforms (Equation 2) consisting of four
parameters for each neuron (and each convolution kernel).

BN (xi) = y I xi — PB) + (2)
0-13 c

Gamma and beta are directly optimized during training while
mu and sigma are computed using the moving averages of
pre-activation means and variances over the batches.

NewWeights (wi) = w1 c±e (3)

NewBias (bi) = ( 
6 + E 

)(bi — p) + (4)

Before we break out the tensors into point neurons, the
model is simplified by merging these parameters into the
weights and biases using 3 and 4. Biases are automatically
added for layers that do not use them natively. Note this
method requires batch normalization layers be applied before
the nonlinearity rather than after it.

(4) Breaking Tensors into Connection Tuples As an inter-
mediate sparse representation between tensors and neurons,
we use a simple list of weighted directed edges represented
as 3-tuples (presynapic-neuron-id, postsynaptic-neuron-id,
connection-weight). For dense layers, each row of the weight
matrix maps directly to the connection weights of a single
unique neuron. In the case of convolutions this involves
creating a unique vertex for each position of each convo-
lution kernel, and omitting connections where there was
previously zero padding. Max-pooling layers are similar to
convolution, but with no padding and a step size equal to the
receptive field width. In a binary-activation quantized net,
max-pooling essentially becomes a multi-input OR-gate, so
the only constraint on connection weights is that they each
individually be sufficient to induce the max-pooling neuron
to fire. Average-pooling currently is not supported.
Replacing Biases with Bias Neurons Biases can be inter-
preted as either firing thresholds or as the weights on an
additional input connection from a bias neuron. In PyNN,
an entire population must share the same neuron template
which includes the firing threshold, so we use the bias neuron
interpretation. Bias neurons are added to each population

(5)



and daisy-chained with a strong excitatory connection so
that each triggers the bias neuron of the next layer.
To accomplish this using only one bias neuron per layer, it
is easier to perform this step after converting to the sparse
representation. While it is technically possible to introduce a
single bias neuron per layer within tensor-based frameworks,
convolution layers make this inelegant.

(6) Time-division Multiplexing (Optional) Binary activation
quantized networks running in spiking hardware allow "single-
pass inference", where multiple samples can pass through the
net simultaniously as separate '`wave-fronts". This provides
advantages in throughput and latency relative to rate-coded
methods which must accumulate spikes for some period of
time [6]. However, binary-activation ANNs require global
synchrony to produce correct one-shot output, and their
real-time simulation produces synchronous bursts of activ-
ity which can overload the communication fabric, possibly
breaking global synchrony.
To reduce this congestion, we use the propagation delay
ring-buffers for time-division multiplexing of the routers.
While SpiNNaker processes synaptic events asynchronously,
neuron state updates are local clock-driven synchronous,
which we take advantage of to approximate global synchrony.
When a firing event is generated by a neuron, SpiNNaker
immediately transmits the spike packet to the destination
cores where it waits in a ring buffer for a time determined
by the propagation delay. Rather than having all neurons of
a presynaptic population fire concurrently, we stagger their
firing and use the delays to ensure all synaptic events from
the source population induce a membrane potential at the
correct time-increment. Thus, while firings of source popula-
tion neurons are not synchronous, their effects downstream
are.

To map the resulting Whetstone network onto SpiNNaker we use
the PyNN interface by converting the DNN layers to PyNN popu-
lations. At this point the weights are still stored in floating-point
precision, with the conversion to the target precision is handled
in the translation to SpyNNaker. For SpiNNaker 1.0, this involves
reducing the precision to Q15.16.

3 RESULTS

We have explored implementing small dense multi-layer neural
networks as well as a convolutional neural network distributed
across the SpiNNaker 48 platform. Given the scale of the platform
and the small footprint of basic MLPs, we anticipate an optimal 'ac-
curacy/throughput' configuration to involve network tiling—where
multiple copies of the network are instantiated across different
chips/cores and multiple inputs are fed simultaneously onto the
board. This configuration is compatible with many image-scanning
applications such as those involving satellite imagery and remote
area mapping.

During testing, we found that having a large number of neurons
400) spike simultaneously within a core overwhelms the SpiN-

Naker router, causing errors. While a small number of dropped or
delayed spikes may be tolerable for the network, we still wanted
to develop methods to mitigate this hardware-specific issue. For

4

any layer configuration (i.e., convolution or densely connected), we
can use the flexible delays supported in-hardware to temporally
demux the signal, see Fig. 3. More specifically, we split a layer into
different temporal groups each of which have outbound (axon-side)
synapses of a different delay. Then, post-synaptic temporal groups
integrate signals distributed in time, which lowers the number of
spikes generated at any given timestep. However, care must be
taken to ensure that the correct spikes are delivered to downstream
neurons in-sync. For convolutional layers, we recognize that the
connectivity is spatially oriented. As such, we can distribute neu-
rons across cores so that nearby neurons (regardless of layer) are
located in the same core. In the experiments presented here, this ap-
proach improved communication bottlenecks, but required careful
layout.

K-2

Time at
which

neuron/core
sends
packet

K=3

Arrow color indicates
propagation delay.

 11111'

Delay assumed to be
handled by receiving
neuron/core.

orange
yellow

green

Figure 3: Depiction of the temporal distribution of spikes to
avoid communication overloads on SpiNNaker

Table 1 provides the results and paramaterization of applying
three different neural network topologies to the Binary Mnist
dataset. The network toplogies are as follows with 10-hot output
encoding:

(1) Small MLP: 785 —> 100 —> 100 —> 100
(2) Medium MLP: 785 —> 800 —> 800 —> 800 —> 100
(3) Convolution Network: 785 —> convl (5x5 x32 kernels) —>

maxpool (2,2) —> conv2 (5x5 x64 kernels) —> maxpool (2,2)
—> 500 dense —> 100

These network topologies were selected through an iterative
exploration and rapid prototyping of networks which converged



with decent accuracy and were compatible with SpiNNaker based
upon architectural observations which follow.

3.1 Discussion

SpiNNaker is designed to run networks within biological timing and
topological constraints, which are often at odds with the demands
placed on the hardware by synchronous single-pass networks. In
the following, we take a closer look at the constraints on synchrony,
propagation delays, and intercore connectivity, all of which have
significant performance impact.

• Intercore Connectivity Constraints Both neuron counts
and fan-in are typically high in DNNs. The point-neuron
interpretation of convolution requires a number of neurons
equal to the size of the output tensor, and the projections
between relatively small convolutional layers easily result in
fan-ins exceeding 255 (ex. fan-in of 288 between two 32-filter
conv-2d layers with 3x3 receptive fields).
While it is technically possible to place more than 255 neu-
rons on a given SpiNNaker core, in cases where there is
maximum fan-in greater than 255, the current firmware
imposes a 255 neuron/core limit. Specifically, a given neu-
ron may project to a maximum of 255 neurons in another
core; due to the 8-bit row-length limit in the synnaptic
matrix (as imposed by the Address List) [9]. It is impor-
tant to note that SpyNNaker divides application vertices
(i.e. PyNN populations) into machine vertices which will
actually fit in the cores, so these limits do not actually ap-
ply to pyNN population sizes, but rather the partitioned
sub-populations (i.e. machine vertices). This, in turn, is set
by calling "set_number_of neurons_per_core" through the
SpyNNaker python API.

• Delay Overhead and Limits According to [9], propagation
delays greater than 16 time-steps are too long for the ring
buffers to maintain and require the use of the "DelayExten-
sionVertex" application. In this scheme, each neuron is given
a delay extension neuron that intercepts spikes and holds
them for a longer delay period before relaying them to the
specified destinations, at the cost of routhly doubling the
required neurons and cores.
Contrary to the above, our experiments found 10 time-steps
(rather than 16) to be the maximum supported delay with-
out invoking the DelayExtensionVertex. In our time-division
multiplexing scheme, K temporal groups produce a maxi-
mum delay of (K*2 - 1), allowing us to use up to 5 temporal
groups without invoking the DelayExtensionVertex. How-
ever, after this initial invocation, no additional cores are
required up the the maximum supported delay of 144 time-
steps [9], theoretically allowing the use of up to 72 temporal
groups.
Besides a doubling of core usage, we also observed the use of
delay extension vertices to be associated with a significant
increase in the incidence of dropped event packets. For exam-
ple, in Table 1 it can be seen that the convolutional network
(using 20 temporal groups) required a time-scale-factor of
14 to completely avoid dropped packets. We suspect this
extra processing time is needed in order to search the larger

5

master population tables which are required to accomodate
the delay extention neurons (see section 3.4.2 of [9]).

• No Guarantee of Global Synchrony SpiNNaker is locally
synchronous but globally asynchronous, meaning that synap-
tic events are handled asynchronously as soon as they arrive,
while the neuron compartment models are updated on a
clock. However, because SpiNNaker strives to achieve real-
time performance, each core must drop unprocessed packets
when it is unable to finish processing synaptic events prior
to a clock tick. Because Whetstone networks are essentially
threshold gates which evaluate inputs in a single time-step,
dropped packets can significantly degrade network perfor-
mance. While results vary, some of our experiments show
that dropped packets can result from as few as 400 simul-
taneous events sent from one core to another. And, while
SpiNNaker does support a packet rejection mechanism, it
can only handle one packet before dropping packets. Thus,
our deployment of Whetstone nets on SpiNNaker is limited
by the SpiNNaker clock rate (200MHz).
Using the current firmware, processing a single synaptic
events takes 23 ARM968 instructions (20 is theoretical opti-
mal) [9]. SpiNNaker can ideally handle about 5,000 synaptic
events per core per millisecond. Therefore, at the current
max of 255 neurons/core, the average number of synaptic
events per neuron that can be handled in 1 millisecond is
about 20. So, without any guarantees of activity sparsity,
we can only afford a fan-in of 20. To achieve higher fan-in
requires slowing down the simulation proportionally, or con-
straining worst-case activity sparsity proportionally. Typical
convolution fan-in ranges from about 288 to 1600, requir-
ing a slowdown somewhere between 15x to 80x, yielding
throughput of between 66 and 12.5 fps. However, in reality,
SDRAM contention-induced latency slows this down further.
While it would seem these issues could be handily solved
by increasing the time-scale-factor, as explained in section
2.2, we have found the synchronous nature of the events
produced by Whetstone networks to overwhelm the com-
munications fabric. It is for this reason we had to devise
time-division multiplexing.

4 CONCLUSIONS

The SpiNNaker architecture has been developed with the goal of
modeling large spiking neural networks with connectivity similar
to the brain and capable of operating in biological real time [3].
Accordingly, even though the SpiNNaker architecture was not de-
signed for ANN and DNN execution explicitly, our results show
the impact of Whetstone trained binary communication neural net-
works exploiting the parallelism of the SpiNNaker neuromorphic
platform. Previously, Serrano-Gotarrendona et al. used temporal
coding to put similar sized convolutional networks on SpiNNaker
[12]. And the recent work by Liu et al. explores putting deep neural
networks on the SpiNNaker 2 prototype introducing DEEP R as a
method to train an algorithm on board by continuously re-writing
the network [8]. Our approach utilizing the Whetstone method
provides an alternative method able to attain high throughput by
utilizing binary communication rather than temporal coding. In



Table 1: Performance of parallel networks on SpinNNaker 48

Network
Small
MLP

Medium
MLP

Convolution
Network

Total Neurons 57000 72500 47640
Total Cores 760 754 371
Total Chips Utilized 48 48 28
Network Tiles 190 29 1
Timescale Factor 5.0 6.0 14.0
Temporal Groups 0 0 20
Sample Delay (ms) 2 2 28
Throughput (frames/sec) 15317 2340 3.25
Accuracy 94% 97.7% 98.1%

doing so we are also able to achieve high classification accuracy
relative to comparable spiking neuromorphic approaches while
minimizing temporal delays.
By distributing many copies of a network across the SpiNNaker

48 platform, this highlights the potential power to implement an
ensemble of networks in parallel or to alternatively partition the
processing of a larger aggregate image into smaller more manage-
able tiles. In this latter case, rather than having a monolithic DNN
operating upon a large image, such as those generated by remote
sensing satellites, smaller tiles from the overarching scene can be
processed in parallel. For example, rather than 190 or 29 network
tiles each processing different binary MNIST inputs as we have
shown here, instead they could be sub-samples of a larger image.
This shows exciting promise for a large neuromorphic platform to
help enable real time processing of sensor data.

Not only have our scaling studies highlighted the potential of
general purpose neuromorphic architectures, but additionally have
helped identify implications of workload impacts upon architectural
choices. As SpiNNaker is designed for biological real time opera-
tion, we observed simultaneous concurrent local spike routing can
overwhelm the routing fabric. While biological systems typically
operate upon sparser activity, the dense spiking of MLP and con-
volution networks identify there are tradeoffs to the overhead of
multi-cast asynchronous routing compared with a synchronous
approach. In the case of the former, with sparse activity it can be
advantageous to only route spikes via packets carrying address
event representation data. However, once this activity saturates the
routing fabric with dense activity an architecture may be more opti-
mally implemented with synchronous communication. The optimal
design choice depends upon the characteristics of the application
workloads.

Overall, these results highlight the potential of highly paral-
lel spiking neuromorphic architectures to enable computations
such as inference efficiently, even though that is not a use case
the architecture was designed for, showing the great potential of
neural-inspired approaches to computing.

ACKNOWLEDGMENT

This work was supported by the Advanced Simulation and Com-
puting, and the Laboratory Directed Research and Development
program at Sandia National Laboratories. Sandia National Labo-
ratories is a multi-program laboratory managed and operated by

6

National Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy's National Nuclear Security Adminis-
tration under contract DE-NA-0003525.

REFERENCES
[1] BRÜDERLE, D., MULLER, E., DAVISON, A. P., MULLER, E., SCHEMMEL, J., AND MEIER,

K. Establishing a novel modeling tool: a python-based interface for a neuromor-
phic hardware system. Frontiers in neuroinformatics 3 (2009), 17 .

[2] DEAN, J., PATTERSON, D., AND YOUNG, C. A new golden age in computer archi-
tecture: Empowering the machine-learning revolution. IEEE Micro 38, 2 (2018),
21-29.

[3] FURBER, S. Large-scale neuromorphic computing systems. Journal of neural
engineering 13, 5 (2016), 051001.

[4] FURBER, S. B., LESTER, D. R, PLANA, L. A., GARSIDE, J. D., PAINKRAS, E., TEMPLE,
S., AND BROWN, A. D. Overview of the spinnaker system architecture. IEEE
Transactions on Computers 62, 12 (2013), 2454-2467.

[5] GROUP, T. K. N. W. Neural network exchange format version 1.0 revision 3, 2018.
[6] HUNSBERGER, E., AND ELIASMITH, C. Training spiking deep networks for neuro-

morphic hardware. arXiv preprint arXiv:1611.05141 (2016).
[7] LIEW, S. S., KHALIL-HANI, M., AND BAKHTERI, R. Bounded activation functions for

enhanced training stability of deep neural networks on visual pattern recognition
problems. Neurocomputing 216 (2016), 718-734.

[8] LIU, C., BELLEC, G., VOGGINGER, B., KAPPEL, D., PARTZSCH, J., HÖPPNER, S., MAASS,
W., FURBER, S. B., LEGENSTEIN, R., MAYR, C. G., ET AL. MeMOry-effiCient deep
learning on a spinnaker 2 prototype. Frontiers in Neuroscience 12 (2018), 840.

[9] RHODES, O., BOGDAN, P. A., BRENNINKMEIJER, C., DAVIDSON, S., FELLOWS, D., GAIT,
A., LESTER, D. R., MIKAITIS, M., PLANA, L. A., ROWLEY, A. G., ET AL. spynnaker:
a software package for running pynn simulations on spinnaker. Frontiers in
Neuroscience 12 (2018), 816.

[10] ROTEM, N., FIx, J., ABDULRASOOL, S., DENG, S., DZHABAROV, R., HEGEMAN, J., LEV-
ENSTEIN, R., MAHER, B., NADATHUR, S., OLESEN, J., ET AL. Glow: Graph lowering
compiler techniques for neural networks. arXiv preprint arXiv:1805.00907 (2018).

[11] SANDERS, J., AND KANDROT, E. CUDA by example: an introduction to general-
purpose GPU programming. Addison-Wesley Professional, 2010.

[12] SERRANO-GOTARREDONA, T., LINARES-BARRANCO, B., GALLUPPI, F., PLANA, L.,
AND FURBER, S. Convnets experiments on spinnaker. In Circuits and Systems
(ISCAS), 2015 IEEE International Symposium on (2015), IEEE, pp. 2405-2408.

[13] SEVERA, W., VINEYARD, C. M., DELLANA, R, VERZI, S. J., AND AIMONE, J. B. Whet-
stone: A method for training deep artificial neural networks for binary commu-
nication. arXiv preprint arXiv:1810.11521 (2018).

[14] SEVERA, W, VINEYARD, C. M., DELLANA, R, VERZI, S. J., AND AIMONE, J. B. Training
deep neural networks for binary communication with the whetstone method.
Nature Machine Intelligence 1, 2 (2019), 86.

[15] STEWART, T. C., AND ELIASMITH, C. Large-scale synthesis of functional spiking
neural circuits. Proceedings of the IEEE 102, 5 (2014), 881-898.


