

Abstract Submission Template

SAND2019-9115C

-Instructions- PLEASE READ

1. Do not alter this template.
2. Anything typed outside the “Replace this text with your abstract title/body” area will be ignored.
3. For scientific equations, use only standard characters, Microsoft Equations Objects, or MathType.
4. If you wish to embed a webpage, use the “Insert Hyperlink” function within Microsoft Word.
5. Do not insert Charts or Images into the abstract. This will cause your abstract to be rejected after submission.
6. Do not retype author lists. These will be automatically added; add only your abstract in between the “abstract” delimiters and your title in between the “title” delimiters.
7. Do not alter the fonts or size/color of the text. Such changes will be ignored and replaced with the standard.
8. There is a limit of 1300 characters. However, depending on such variables as the amount of “white space” or use of mathematical equations, some abstracts with less than 1300 characters will exceed our publication space limitations, and will be rejected. You will be able to preview your formatted abstract and check its length later in the submission process.
9. When saving this document. Use “File -> Save AS” and save as an RTF document. Please note the location where you save this document as you will need it when you upload it using the browse button.

-/Instructions-

-title-

Flow Instabilities during High-performance Operation of a Wind Energy Harvester with No External Moving Parts
-/title-

-abstract-

A novel wind energy harvester with no external moving parts is demonstrated at one-third scale (0.5-meter chord) in wind tunnel tests. The device uses mirrored airfoil-pairs to create suction. This pulls air out from ducts internal to the foils, through air-jet orifices on the low-pressure sides of the foils, and into the external incident wind. Power is transmitted pneumatically through the center of the foils to an internal turbine-generator. In the high-performance operating mode at high angle-of-attack, a mechanical power transmission of nearly one-half of the Betz limit is achieved. However, this high angle-of-attack configuration is susceptible to aero-acoustic instabilities which can diminish the performance to as low as one-sixth of the Betz limit. These instabilities are investigated here for a configuration with all air-jets covered. Pressure measurements are made on the low-pressure sides of the foils and the break in symmetry associated with the instability is documented. Particle image velocimetry is used to characterize the flow field before and after onset of the instability.

SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525.

-/abstract-