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Motivation

« Disaster recovery:

« scheduling evacuation while calibrating
hurricanes for accurate predictions,

* mitgating wildfires

« controlling oil spills

« Additive manufacturing:

« control of laser velocity, magnitude and
rasterization pattern while selecting material
type

* Energy:

* hydrocarbon hydrocarbon

* gas networks

» electrical grid

« solar cells

» Piezoelectric
« communication through barriers
* energy harvesting
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Outline

* Background
* Formulation
e Solution Strategies
e Software Overview
 PEBBL
e ROL
* Interface
* Numerical prototype
* Linear convection diffusion

* Nonlinear diffusion reaction

* Summary
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Formulation: mixed integer

min f(u,x) subjectto c(u,x)=0

u,T

where u is the state, x are the control variables,
r € ZP (integers), c(u,x) is a set of PDE equations
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Solver Strategies and Challenges

« Branch and bound

« Generalized Benders decomposition

» Quter approximation

« Outer approximation with equality relaxation

« Outer approximation with equality relaxation and augmented penalty
* Generalized outer approximation

* Generalized Cross Decomposition
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« provide extreme scalability in implementing branch-and- bound methods on
distributed-memory computing systems.

« C++, using the MPIl message-passing API [49] to communicate between
processors

 flexible work distribution and load balancing scheme that achieves
unmatched scalability and has only two strata in its processor hierarchy
“‘workers and hubs”

» application-specific non-tree parallelism during the search ramp-up phase,
followed by a “crossover” to using tree-based parallelism

« Support for enumeration of multiple optimal and near-optimal solutions
meeting a variety of configurable criteria

*Jonathan Eckstein - William E. Hart - Cynthia A. Phillips, “PEBBL: An Object-Oriented Framework for
Scalable Parallel Branch and Bound *
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Software Overview: PEBBL ) e

PEBBL (Parallel Enumeration and Branch and Bound Library)
might be a useful tool for solving large-scale problems with a
combinatorial piece (e.g. mixed-integer optimization)

Branch and bound
* Intelligent enumerative search

* Finds an optimal solution and (computationally) proves
optimality
 But might take too long if not done carefully

e Software freely available (BSD license)
* Highly scalable

J. E. Eckstein, W. E. Hart, C. A. Phillips, “PEBBL.: an object-oriented framework for scalable parallel branch and
bound,” Mathematical Programming Computation, Vol. 7, No. 4, pp. 429—- 469, December, 2015.
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Branch and Bound

Branch and Bound is an intelligent (enumerative) search procedure for discrete
optimization problems.

mianXf(x)

Requires subproblem representation and 3 (problem-specific) procedures:
e Compute an lower bound b(X)
Vxe X, b(x)= f(x)

 Find a candidate solution

e Can fail

* Require that it recognizes feasibility if X has only one point

e Split a feasible region (e.g. over parameter/decision space)

e e.g. Add a constraint
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Branch and Bound

Root Problem

Fathome

L.> U infeasible

New best solution
U=L,

Recursively divide feasible region, prune search when no optimal solution can be in the region.

Important: need good bounds, good heuristics




Parallel Enumeration and Branch-and-Bound i,
Library (PEBBL)

Check if no other

* Distributed memory (MPI), C++ parallel B&B tools?
* Massively parallel (scalable)
* General parallel Branch & Bound environment

* Parallel search engine cleanly separated from application and
platform

* Portable

* Flexible

* Integrate approximation techniques
* Open source

(There are other parallel B&B frameworks: PUBB, Bob, PPBB-Lib,
Symphony, BCP, CHiPPS/ALPS, FTH-B&B, and codes for MIP)
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PEBBL Features for Efficient Parallel B&B @&

* Efficient processor use during ramp-up (beginning)

* Integration of heuristics to generate good solutions early
* Worker/hub hierarchy

 Efficient work storage/distribution

e Control of task granularity

* Load balancing

* Non-preemptive proportional-share “thread” scheduler
* Correct termination

e Early output

* Checkpointing
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Bound Computation: PDE-constrained optimization

min f(u,x) subjectto c(u,z) =0

U, T

where u is the state, x are the control variables,
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Full space solution strategy

min f(u,x
U, flu, z) Optimization Formulation

subject to: ¢(u,x) =0

L(u,z,A) = f(u,z) + Ac(u, x) Lagrangian

( ) ( \

Ly =L Jd,+ Xy p =0 Optimality conditions

\ £>‘ y, \ C y

Lo Luecp] [0 A KKT after Newton iterati
after Newton iteration

£xu E:m; Cz; or » = — fa:
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Reduced space solution strategy
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ml@n f(x) where u solves c(u(x), x)
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Trilinos packages

Linear Algebra

Epetra
EpetraExt
Tpetra
Jpetra
Kokkos

Preconditioners
ML

Ifpack

Teko

Mesh Partitioning /
DD

Claps

Moertel
Isorropia
Zoltan

Solvers

AztecOO
Belos
Pliris
Komplex
Amesos
NOX
LOCA
ROL

Piro
Rythmos
TriKota
Globipack
Optipack

Anasazi

PDE Tools

Phalanx
Intrepid
Shards

Panzer

Tools
Teuchos
SEACAS
STK
Sacado
Stokhos

Interfaces

Thyra
PyTrilinos
Stratimikos
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Trilinos: ROL i)

Linear Algebra PDE Tools
AztecOO

Epetra

Intrepid

Tools

Preconditioners Teuchos
ML

ROL

Sacado

Mesh Partitioning /

L [r—




Rapid Optimization Library (ROL) ™=
* Trilinos package for large-scale continuous optimization

®* Hardened, production-ready algorithms for unconstrained and equality-
constrained optimization

®* Range of methods

* Algorithmic flexibility/extensibility

* A unified interface for simulation-based optimization.
* New methods for optimization under uncertainty.

* Modular with a balance of abstraction and low level access 19
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ROL Design

* maturity of simulation driving complexity — multiscale/physics

* interface to production codes

e function analysis — spaces, norms, inner products, Riecz maps, duality, etc.
 advancements of computer architectures — parallel, GPUs, resiliency, etc.
* range of optimization formulations

e uncertainties — risk measures, sampling

* large scale, inexactness, etc...

e efficient research

modularity, flexibility, efficient, appropriate interfaces
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ROL problem type:

Type-U: Unconstrained. Type-B: Bound constrained.
min f(x) min f(x)
X X

subject to a <x <b

Type-E: Equality constrained. Type-EB: Equalities + bounds.
min f(x) min  f(x)
T X
subject to c(x) =0 subject to c(z) =0
a<zx<b

Type-S: Stochastic.
min R(f(x))
subject to ¢(x) =0

e
21
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Methods Overview

Type-U (unconstrained):
* LineSearch and trust region

« Gradient descent, quasi-Newton (limited-memory BFGS, DFP, BB),
nonlinear CG (6 variants), inexact Newton, Newton

* Trust-region methods supporting inexact objective and gradient evals
Type-E (equality constrained):

« Sequential quadratic programming (SQP) with trust regions
Type-B (bound constrained):

* Projected gradient and projected Newton methods.

* Primal-dual active set methods.
Type S — (Stochastic)

« Compute controls/designs that are risk-averse

* Risk measures: Conditional value-at-risk (CVaR), Expectation (mean),
Mean plus deviation, Mean plus variance, Exponential disutility, etc.

* |Incorporate sampling and adaptive quadrature approaches .

22
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General Design

Application programming interface

Linear algebra . . Algorithmic
. Functional interface :
interface interface

Objective
BoundConstraint
EqualityConstraint

Methods — Implementations of Step instances
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General Design Patterns

* templated approach

 virtual base class functions

e Linear algebra parallelism

* balanced abstraction versus low level access

e automatic memory management

24



Algorithmic interface

StatusTest

ROL::Algorithm

run
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Step Class Design

Step Base Class

AugmentedLagrangian LineSearch TrustRegion Secant
NonlinearCG 3 ry Y
Bundle
PrimalDualActiveSet
Composite BackTracking CauchyPoint BarzilaiBorwein
ProjectedNewtonKrylov Bisection DoubleDogleg IDFP
Gradient Brents TrustRegion IBFGS
ProjectedNewton Cubiclnterp Dogleg ISR1
InteriorPoint GoldenSection TruncatedCG
ProjectedSecant
MoreauYosidaPenalty
mzﬁgzgz?v Additional specialization:

Krylov

Interiorpoint

bundle

26




Functional Class Design

A

Objective Base Class [¢=====

A

BoundConstraint F============ » EqualityConstraint
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AugmentedlLagrangian
LogBarrierObjective
MoreauYosidaPenaltyObjective
NonlinearLeastSquaresObjective
QuadraticObjective
ObjectiveFromBoundConstraint
CompositeObjective  SimOpt
Objective_SimOpt
Reduced_Objective SimOpt
StdObijective
LinearCombinationObjective
Linear

BoundConstraint_SimOpt
BoundInequalityConstraint
StdBoundConstraint
UpperBoundInequalityConstraint
LowerBoundInequalityConstraint
BoundConstraint_Partitioned

CompositeConstraint
CompositeObjective
ScalarLinearEqualityConstraint
EqualityConstraint_SimOpt
InequalityConstraint

27




SimOpt: functional interface for e
engineering optimization

Lo Lous cg_ ou fu )
Ea:u La:ar; Cg ox p = — fZE >
Cu Cy 0 A* el

Objective_SimOpt EqualityConstraint_SimOpt
value() «  Value()
gradient_u() « applyJacobian_u()
gradient_z()  applyJacobian_z()
hessvec_uu() « applyJacobianInverse_u()
hessvec_zz() « applyJacobianInverse_z()
hessvec_uz() « applyadjointHessian_uu()
hessvec_zu() - applyadjointHessian_zz()
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Functional Class Design - Stochastic

A

Objective Base Class ===

a

Risk Measure ¢============== Distribution

BPOEObijective

Reduced ParObijective_SimOpt
RiskAverseObijective
HMCRObjective
RiskNeutralObjective

_——--’

SamplerGenerator

a

MonteCarloGenerator
SROMGenerator.hpp

CVaR

MeanDeviation
MeanDeviationFromTarget
CoherentExpUTtility
MeanVariance
ConvexCombinationRiskMeasure
MeanVarianceFromTarget
ExpUTtility
ExpectationQuad
Fdivergence
SingletonKusuoka

HMCR

KLDivergence

{

Sandia
National
Laboratories

Arcsine

Gaussian

Triangle

Beta
Kumaraswamy
TruncatedExponential
Cauchy

Laplace
TruncatedGaussian
Dirac

Logistic

Uniform

Parabolic
Exponential
RaisedCosine
Gamma

Smale
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: 1
Design  f(u,z) = 5/ xdf2
Q

nverse f(u,) = 3 [ (u—u)oly— v+ 5 [ a0
Q Q

. OED flu,z,q) =tr C~'(q)

1
e Control f(u,z)= 5/(u—a)stH—g-/ 22 dS)
Q Q

« OUU flu,z,€&) = %R/Q(u(f) —a)2dﬂ+§/9x2dﬂ
e MIPDECO

[



Application Examples

Inverse problems in acoustics/elasticity Estimating basal friction of ice sheets

Interface to the Sierra-SD ASC Integrated Code
for structural dynamics

200,

8

o

i w— gimulation
200 —— experiment

0 0005 001 0015 002
Time (s)

Aqoust-c'Pressuve at Mic 11
8

1M optimization and state variables

Interface to DGM, a high-order Discontinuous
Galerkin code

500K optimization, 2M X 5K state variables
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Interface to Trilinos-based Albany

144,

5M optimization, 20M state variables
—

Super-resolution imaging

GPU image processing using ArrayFire

250K optimization variables, NVIDIA Tesla
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Optimal Control

. Real e Imaginary

4 60 4 60

3 40 3 40

2 2 Desired state — real

1 .-' 20 1 A 20 component

0 \ 0 0 i 0

-1 \ r -1 _ 5 1

-2 o 20 -2 \‘“_ 20 4

-3 -40 - -40 3 05

> -60 = -60 : \

5-4-3-2-1 012345 5-4-3-2-1 012345 0 \\ 0
-1 \

5 D -2 \

4 150 4 150 -3

] 100 : 100 - y

1 50 1 50 Z5-4-3-2-1 0 1 2345

0 \ 0 0 \ 0 Note:

-1 \ 50 -1 \ 50 »  Region of interest (ROI)

-2 \\‘_ , -2 \\\ is stochastic

-3 =10 -3 -100 . Parameterized with KL

-4 -150 -4 -150 expansion

_554321 012345 -554321 0 1 345 = SEing ANaem

________ 2 covariance

Note: Controls for stochastic ROI are three times smaller than the controls for the deterministic ROI
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Expected
value of state
in ROI

Expected
value of
optimal state
of entire
region

Standard
deviation of
optimal state

State Solution

Real

S5 4321012345

'5’5-4-3-2-1 012345

0.5

-0.5

0.3

0.2

0.1

0

Imaginary

-4

‘-55_4-3-2-1 012345

5
4
3
2
1
0

-1

-2

-3

-4

"5’5-4-3-2-1 012345

0.3

0.2

0.1

0
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Scalability in the stochastic dimension

dim PDE Solves CP ol CPgraa  Obj. Value
42 11,543 145 145 5.2542
44 32,739 233 481 5.2637
46 60,617 243 1,453 5.2641
48 79,221 247 2,961 5.2641
50 90,157 251 4,569 5.2641
60 100,911 271 7,621 5.2641
70 103,979 291 8,233 5.2641
80 105,607 311 8,253 5.2641

Scalable performance as dim is increased!

“Inexact Objective Funciton Evaluations in a Trust-Region Algorithms for PDE-Constrained Optimization under
Uncertainty” D. P. Kouri, M. Heinkensshloss, D. Ridzal, and B. G. van Bloemen Waanders, SISC 2014
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Discrete control constrained by convection diffusion

min [ w?dz
Bk

st. —KAu+4v-Vu=f; — Bz,

Zzn:b

2k € {0, 1}
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Discrete control constrained by convection diffusion

Control budget = 1:
Best Solution: Value = 0.23296676414411773837

Subproblems

Created 3 100.0%
Started Bounding 3 100.0%
Bounded 3 100.0%
Started Splitting 1 33.3%
Split 1 33.3%
Dead 0 0.0%

Control budget = 2:
Best Solution: Value = 0.12046194228269418991

Subproblems

Created 1 100.0%
Started Bounding 1 100.0%
Bounded 1 100.0%
Started Splitting 0 0.0%
Split 0 0.0%

Dead 0 0.0%

Control budget = 3:
Best Solution: Value = 0.053908605587946134552

Subproblems

Created 1 100.0%
Started Bounding 1 100.0%
Bounded 1 100.0%
Started Splitting 0 0.0%
Split 0 0.0%

Dead 0 0.0%

Control budget = 4:

Best Solution: Value = 0.024574563516836123167

Subproblems

Created 3 100.0%
Started Bounding 3 100.0%
Bounded 3 100.0%
Started Splitting 1 33.3%
Split 1 33.3%
Dead 0 0.0%

Control budget = 5:

Best Solution: Value = 0.014031681832521125664

Subproblems

Created 11 100.0%
Started Bounding 11 100.0%
Bounded 11 100.0%
Started Splitting 5 45.5%
Split 5 45.5%

Dead 0 0.0%

Control budget = 6:

Best Solution: Value = 0.012210756870505823368

Subproblems

Created 17 100.0%
Started Bounding 17 100.0%
Bounded 17 100.0%
Started Splitting 8 47.1%
Split 8 47.1%

Dead 0 0.0%
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Control budget =7:

Best Solution: Value = 0.021892389837279369047

Subproblems

Created 3 100.0%
Started Bounding 3 100.0%
Bounded 3 100.0%
Started Splitting 1 33.3%
Split 1 33.3%

Dead 0 0.0%

Control budget = 8:

Best Solution: Value = 0.056777218136662865877

Subproblems

Created 3 100.0%
Started Bounding 3 100.0%
Bounded 3 100.0%
Started Splitting 1 33.3%
Split 1 33.3%

Dead 0 0.0%

Control budget = 9:

Best Solution: Value = 0.13605755967561344866

Subproblems

Created 1 100.0%
Started Bounding 1 100.0%
Bounded 1 100.0%
Started Splitting 0 0.0%
Split 0 0.0%

Dead 0 0.0%
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Directional Derivative Split Computation

« How to branch on variables or split the computations?
* Naive approach
» Directional derivative

V(p) = min {f(z,p): c(z,p) <0}

/ . (V) —|—5 +’U
V (piop) = limy (p 11) (p)

Result: reduces optimization to single bound computation but linear
convex problem and therefore not interesting
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Discrete control constrained by convection diffusion reaction  (rh) i

Laboratories
. 2
min | u“dzx
Zk

st. —KAu+v-Vu=f;,—Bz;+ R

Zzn:b
2L € {0,1}
R=u*(1—u)

Results: forthcoming
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Summary

* Developed branch and bound framework to solve MIPDECO
problems

* Parallelism available for BB and PDECO problems

* Interface is extensible to allow other branching mechanisms,
BB algorithms, PDECO algorithms

* Linear and nonlinear problem tested
* Hierarchical model interface developed but not tested

 Simultaneous continuous and discrete variables are still
needed
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Thank You




