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Motivation

• Disaster recovery:
• scheduling evacuation while calibrating

hurricanes for accurate predictions,
• mitgating wildfires
• controlling oil spills

• Additive manufacturing:
• control of laser velocity, magnitude and

rasterization pattern while selecting material
type

• Energy:
• hydrocarbon hydrocarbon
• gas networks
• electrical grid
• solar cells

• Piezoelectric
• communication through barriers
• energy harvesting
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Formulation: mixed integer

min f (u, x) subject to c(u, x) = 0

where u is the state, x are the control variables,
x E 3P (integers), c(u, x) is a set of PDE equations
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Solver Strategies and Challenges

• Branch and bound
• Generalized Benders decomposition
• Outer approximation
• Outer approximation with equality relaxation
• Outer approximation with equality relaxation and augmented penalty
• Generalized outer approximation
• Generalized Cross Decomposition
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PEBBL: Parallel Enumeration and Branch and Bound Library*

• provide extreme scalability in implementing branch-and- bound methods on
distributed-memory computing systems.

• C++, using the MPI message-passing API [49] to communicate between
processors

• flexible work distribution and load balancing scheme that achieves
unmatched scalability and has only two strata in its processor hierarchy
"workers and hubs"

• application-specific non-tree parallelism during the search ramp-up phase,
followed by a "crossover" to using tree-based parallelism

• Support for enumeration of multiple optimal and near-optimal solutions
meeting a variety of configurable criteria

*Jonathan Eckstein - William E. Hart - Cynthia A. Phillips, "PEBBL: An Object-Oriented Framework for
Scalable Parallel Branch and Bound "
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Software Overview: PEBBL
PEBBL (Parallel Enumeration and Branch and Bound Library)
might be a useful tool for solving large-scale problems with a
combinatorial piece (e.g. mixed-integer optimization)

Branch and bound

• Intelligent enumerative search

• Finds an optimal solution and (computationally) proves
optimality

• But might take too long if not done carefully

• Software freely available (BSD license)

• Highly scalable

J. E. Eckstein, W. E. Hart, C. A. Phillips, "PEBBL: an object-oriented framework for scalable parallel branch and
bound," Mathematical Programming Computation, Vol. 7, No. 4, pp. 429— 469, December, 2015.
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Branch and Bound
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Branch and Bound is an intelligent (enumerative) search procedure for discrete

optimization problems.

minxEJ(x)

Requires subproblem representation and 3 (problem-specific) procedures:

• Compute an lower bound b(X)

V x E X, b(x) f (x)

• Find a candidate solution

• Can fail

• Require that it recognizes feasibility if X has only one point

• Split a feasible region (e.g. over parameter/decision space)

• e.g. Add a constraint

-,



Branch and Bound

xi 0

Fathome
Lk > U

x, = .3

New best solution
U = Lk

Root Problem

Xi 1

infeasible
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• Recursively divide feasible region, prune search when no optimal solution can be in the region.
• Important: need good bounds, good heuristics

J. %.1



Parallel Enumeration and Branch-and-Bound

Library (PEBBL)

• Distributed memory (MPI), C++

• Massively parallel (scalable)

• General parallel Branch & Bound environment

• Parallel search engine cleanly separated from application and
platform

• Portable

• Flexible

• Integrate approximation techniques

• Open source
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Check if no other
parallel B&B tools?

(There are other parallel B&B frameworks: PUBB, Bob, PPBB-Lib,
Symphony, BCP, CHiPPS/ALPS, FTH-B&B, and codes for MIP)
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PEBBL Features for Efficient Parallel B&B

• Efficient processor use during ramp-up (beginning)

• lntegrafion of heuristics to generate good solutions early

• Worker/hub hierarchy

• Efficient work storage/distribution

• Control of task granularity

• Load balancing

• Non-preemptive proportional-share "thread" scheduler

• Correct termination

• Early output

• Checkpointing
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Results: Enumeration
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Bound Computation: PDE-constrained optimization

min f (71, x) subject to c(u, x) = 0
u,x

where u is the state, x are the control variables,
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Full space solution strategy

min f (u, x)
u ,x

subject to: c(u, x) = 0

L(u, x, À) — f (u, x) + Ac(u, x)

{ } {Ju + Acu}
Jx + Acx =0

c

[Luu Lux cT, (Su
Lxu Lxx cT öxx
cu cx 0 À*
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Optimization Formulation

Lagrangian

Optimality conditions

KKT after Newton iteration



Reduced space solution strategy

min f(x)
x

where u solves c(u(x), x)

0 f (x) 0 f Ou + 0 f

Ox Ou Ox Ox

f (x) = f (u(x), x) Ou 0c —1 Oc

Ox Ou Ox

0 f (x) 0 f Oc -1 Oc 0 f
=

Ox Ou Ou Ox 
± 

Ox

0 f (x) OC-T Of Oc 0 f
= - — — — 

Ox O 
+ 

u Ou Ox Ox

xn+1 = xn + apN P
N
=

v2rl vf
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Trilinos packages

Linear Algebra

Epetra

EpetraExt

Tpetra

Jpetra

Kokkos

Preconditioners

ML

lfpack

Teko

h Partitioning /

Claps

Moertel

lsorropia

Zoltan

Solvers

Aztec00

Belos

Pliris

Komplex

Amesos

NOX

LOCA

ROL

Piro

Rythmos

Tri Kota

Globipack

Optipack

Anasazi

PDE Tools

Phalanx g
I ntrepid

Shards

Panzer

Tools

Teuchos

SEACAS

STK

Sacado

Stokhos

Interfaces

Thyra

PyTrilinos

Stratimikos
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Trilinos: ROL

Linear Algebra

Epetra

Preconditioners

ML

Mesh Partitioning /
DD

Solvers

Aztec00

IL A

ROL

PDE Tools

Intrepid

Tools

Teuchos

Sacado

Interfaces
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Rapid Optimization Library (ROL)

• Trilinos package for large-scale continuous optimization

• Hardened, production-ready algorithms for unconstrained and equality-
constrained optimization

• Range of methods

• Algorithmic flexibility/extensibility

• A unified interface for simulation-based optimization.

• New methods for optimization under uncertainty.

• Modular with a balance of abstraction and low level access
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ROL Design
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• maturity of simulation driving complexity — multiscale/physics

• interface to production codes

• function analysis — spaces, norms, inner products, Riecz maps, duality, etc.

• advancements of computer architectures — parallel, GPUs, resiliency, etc.

• range of optimization formulations

• uncertainties — risk measures, sampling

• large scale, inexactness, etc...

• efficient research

modularity, flexibility, efficient, appropriate interfaces
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ROL problem type:

Type-U: Unconstrained. Type-B: Bound constrained.

min f (x) min f (x)
x x

subject to a < x < b

Type-E: Equality constrained. Type-EB: Equalities + bounds.

min f (x) min f (x)
x x

subject to c(x) = 0 subject to c(x) = 0

a < x < b

Type-S: Stochastic.

min R.( f (x))
x

subject to c(x) = 0

a < x < b
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Methods Overview
• Type-U (unconstrained):
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• LineSearch and trust region

• Gradient descent, quasi-Newton (limited-memory BFGS, DFP, BB),
nonlinear CG (6 variants), inexact Newton, Newton

• Trust-region methods supporting inexact objective and gradient evals

• Type-E (equality constrained):

• Sequential quadratic programming (SQP) with trust regions

• Type-B (bound constrained):

• Projected gradient and projected Newton methods.

• Primal-dual active set methods.

• Type S — (Stochastic)

• Compute controls/designs that are risk-averse

• Risk measures: Conditional value-at-risk (CVaR), Expectation (mean),
Mean plus deviation, Mean plus variance, Exponential disutility, etc.

• Incorporate sampling and adaptive quadrature approaches .
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General Design

Application programming interface

Linear algebra
interface

Vector

Functional interface

Objective
BoundConstraint
EqualityConstraint

SimOpt

Algorithmic
interface

Step

Methods — Implementations of Step instances
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General Design Patterns

• templated approach

• virtual base class functions

• Linear algebra parallelism

• balanced abstraction versus low level access

• automatic memory management

Sandia
National
Laboratories

24



Algorithmic interface

gtol,stol,maxit

1
ParameterList 1
  1

StatusTest

,,,,,

Step

L Vector

Objective

ROL::Algorithm
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Step Class Design

Step Base Class
A

AugmentedLagrangian
NonlinearCG
Bundle
PrimalDualActiveSet
Composite
ProjectedNewtonKrylov
Gradient
ProjectedNewton
InteriorPoint
ProjectedSecant
MoreauYosidaPenalty
NewtonKrylov
NewtonStep

LineSearch

BackTracking
Bisection
Brents
Cubiclnterp
GoldenSection

TrustRegion

1
CauchyPoint
DoubleDogLeg
TrustRegion
DogLeg
TruncatedCG

Additional specialization:
Krylov
lnteriorpoint
bundle

Sandia
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Secant

1
BarzilaiBorwein
IDFP
IBFGS
ISR1
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Functional Class Design

Objective Base Class
•

AugmentedLagrangian
LogBarrierObjective
MoreauYosidaPenaltyObjective
NonlinearLeastSquaresObjective
QuadraticObjective
ObjectiveFromBoundConstraint
CompositeObjective_SimOpt
Objective_SimOpt
Reduced Objective SimOpt
StdObjective
LinearCombinationObjective
Linear

BoundConstraint
A

BoundConstraint SimOpt
BoundlnequalityConstraint
StdBoundConstraint
UpperBoundlnequalityConstraint
LowerBoundlnequalityConstraint
BoundConstraint Partitioned

Sandia
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H EqualityConstraint
•

CompositeConstraint
CompositeObjective
ScalarLinearEqualityConstraint
EqualityConstraint_SimOpt
lnequalityConstraint
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SimOpt: functional interface for
engineering optimization

Objective_SimOpt

• value()

• gradient_u()

• gradient_z()

• hessvec uu()

• hessvec zz()

• hessvec uz()

• hessvec zu()

T-
Cu

CTx

0

{6u fu}
6x} = - {fx
A* c

LI

EqualityConstraint_SimOpt

• Value()

• applyjacobian_u()

• applyjacobian_z()

• applyjacobianInverse_u()
• applyjacobianInverse_z()

• applyadjointHessian_uu()

• applyadjointHessian_zz()
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Functional Class Design - Stochastic

Objective Base Class 14-
•

BPOEObjective
Reduced_ParObjective_SimOpt
RiskAverseObjective
HMCRObjective
RiskNeutralObjective

• 

SamplerGenerator

MonteCarloGenerator
SROMGenerator.hpp

Risk Measure 14-
•

CVaR
MeanDeviation
MeanDeviationFromTarget
CoherentExpUtility
MeanVariance
ConvexCombinationRiskMeasure
MeanVarianceFromTarget
ExpUtility
ExpectationQuad
Fdivergence
SingletonKusuoka
HMCR
KLDivergence

Distribution
•

Arcsine
Gaussian
Triangle
Beta
Kumaraswamy
TruncatedExponential
Cauchy
Laplace
TruncatedGaussian
Dirac
Logistic
Uniform
Parabolic
Exponential
RaisedCosine
Gamma
Smale
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• Design

• Inverse

f (u, x)

Use cases

1 f

= 2 j c2 xciC2

f (u, x) =
1 f

2 j (11" - u*)2 (5(y - y*)A2 
+II

C2 2

• OED f (u, x , q) = tr C-1 (q)

• Control f (u, x) = 
2
fci(u — ii)2 dQ + f x2 c1S2

• OUU f (u, x, 0 
1 

= —'R, f (u(0 — fi)2 dQ + i3 f x2 c1S2
2 Q 2 Q

• MIPDECO
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Application Examples

Inverse problems in acoustics/elasticity

Interface to the Sierra-SD ASC Integrated Code
for structural dynamics

200

2 1 00

0

-100
12
t" -Simulation

[.1-2001=_.exponmont

o 0.006 0.01 0.015 0 02

TIM (9)

1M optimization and state variables

Interface to DGM, a high-order Discontinuous

Galerkin code
Vp (m

4500
4000
3500
3000
2500
2000 
1500

, 

Vp (Ms)
4500
4000
3500
3000
2500
2000
1500

500K optimization, 2M x 5K state variables
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Estimating basal friction of ice sheets

Interface to Trilinos-based Albany

5M optimization, 20M state variables

Super-resolution imaging

GPU image processing using ArrayFire

(a) (b) (c)

250K optimization variables, NVIDIA Tesla
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Desired state - real
component

5 1

4
3
2

0.5

1

0 0
—1
—2
—3

-0.5

—4
—5 -1
5 4 3 2 1 0 1 2 3 4 5

Note:
• Region of interest (ROD

is stochastic
• Parameterized with KL

expansion
• Using a Matérn

covariance

Note: Controls for stochastic ROI are three times smaller than the controls for the deterministic ROI
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Expected
value of state
in ROI

Expected
value of
optimal state
of entire
region

Standard
deviation of
optimal state
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Scalability in the stochastic dimension

dim PDE Solves CPobj CPgrad Obj. Value

42
44
46
48
50
60
70
80

11,543 145 145 5.2542
32,739 233 481 5.2637
60,617 243 1,453 5.2641
79,221 247 2,961 5.2641
90,157 251 4,569 5.2641
100,911 271 7,621 5.2641
103,979 291 8,233 5.2641
105,607 311 8,253 5.2641

Scalable performance as dim is increased!

"Inexact Objective Funciton Evaluations in a Trust-Region Algorithms for PDE-Constrained Optimization under
Uncertainty D. P. Kouri, M. Heinkensshloss, D. Ridzal, and B. G. van Bloemen Waanders, SISC 2014
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Discrete control constrained by convection diffusion

min f u2 dx
zk

s.t. — KOu+v•Vu= fi Bzj

E z, = b
zk E {0, 1}
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Discrete control constrained by convection diffusion

Control budget = 1:
Best Solution: Value = 0.23296676414411773837

Subproblems

Control budget = 4:

Best Solution: Value = 0.024574563516836123167

Subproblems

Created 3 100.0%
Started Bounding 3 100.0% Created 3 100.0%

Bounded 3 100.0% Started Bounding 3 100.0%

Started Splitting 1 33.3% Bounded 3 100.0%

Split 1 33.3% Started Splitting 1 33.3%

Dead 0 0.0% Split 1 33.3%
Dead 0 0.0%

Control budget = 2:
Best Solution: Value = 0.12046194228269418991

Subproblems

Created 1 100.0%
Started Bounding 1 100.0%
Bounded 1 100.0%
Started Splitting 0 0.0%
Split 0 0.0%
Dead 0 0.0%

Control budget = 3:

Best Solution: Value = 0.053908605587946134552

Subproblems

Created 1 100.0%
Started Bounding 1 100.0%
Bounded 1 100.0%
Started Splitting 0 0.0%
Split 0 0.0%
Dead 0 0.0%

Control budget = 5:

Best Solution: Value = 0.014031681832521125664

Subproblems

Created 11 100.0%
Started Bounding 11 100.0%
Bounded 11 100.0%
Started Splitting 5 45.5%
Split 5 45.5%
Dead 0 0.0%

Control budget = 6:

Best Solution: Value = 0.012210756870505823368

Subproblems

Created 17 100.0%
Started Bounding 17 100.0%
Bounded 17 100.0%
Started Splitting 8 47.1%
Split 8 47.1%
Dead 0 0.0%
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Control budget = 7:

Best Solution: Value = 0.021892389837279369047

Subproblems

Created 3 100.0%
Started Bounding 3 100.0%
Bounded 3 100.0%
Started Splitting 1 33.3%
Split 1 33.3%
Dead 0 0.0%

Control budget = 8:

Best Solution: Value = 0.056777218136662865877

Subproblems

Created 3 100.0%
Started Bounding 3 100.0%
Bounded 3 100.0%
Started Splitting 1 33.3%
Split 1 33.3%
Dead 0 0.0%

Control budget = 9:

Best Solution: Value = 0.13605755967561344866

Subproblems

Created 1 100.0%
Started Bounding 1 100.0%
Bounded 1 100.0%
Started Splitting 0 0.0%
Split 0 0.0%
Dead 0 0.0%
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Directional Derivative Split Computation

• How to branch on variables or split the computations?
• NaIve approach
• Directional derivative

V (p) = min { f (x , p) : c(x , p) < 01

V' 
v(p + 6 p) + v (p) 

(p, 4) = lim 
t o t

Result: reduces optimization to single bound computation but linear
convex problem and therefore not interesting
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Discrete control constrained by convection diffusion reaction

min f u2dx
Zk

s.t. KAI/ + v • Vu fi Bzi + R
>_:

,zr, — b

zk E {0,1}

R u2 (1 u)

Results: forthcoming
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Summary

• Developed branch and bound framework to solve MIPDECO
problems

• Parallelism available for BB and PDECO problems

• Interface is extensible to allow other branching mechanisms,
BB algorithms, PDECO algorithms

• Linear and nonlinear problem tested

• Hierarchical model interface developed but not tested

• Simultaneous continuous and discrete variables are still
needed
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Thank You
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