

MI DI

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Machine Learning and Deep Learning

SAND2019-9054C

Conference 2019

MLD

SAR ATR Using Deep Latent Spaces

July 29, 2019

Matt Kagine | 5448
Funded by LDRD

National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Problem Overview

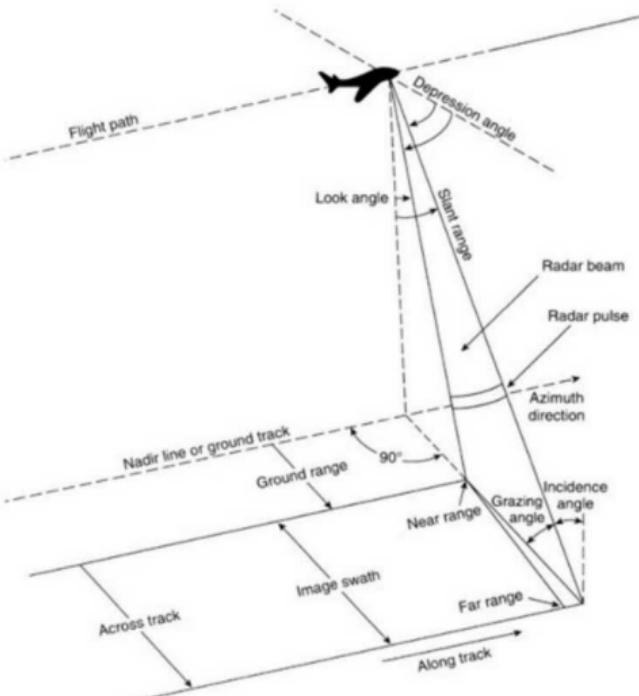
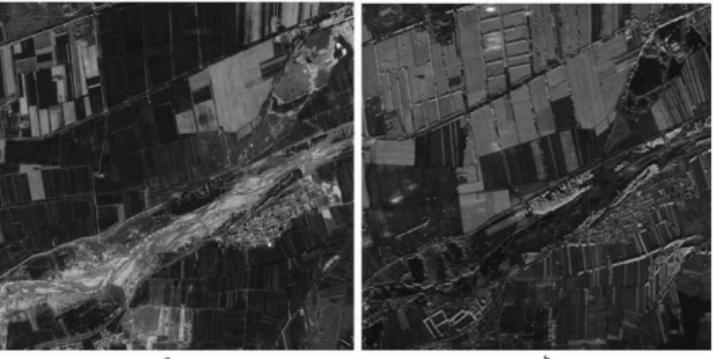
State-of-the-Art

Siamese Variational Autoencoder

Results

Future Work

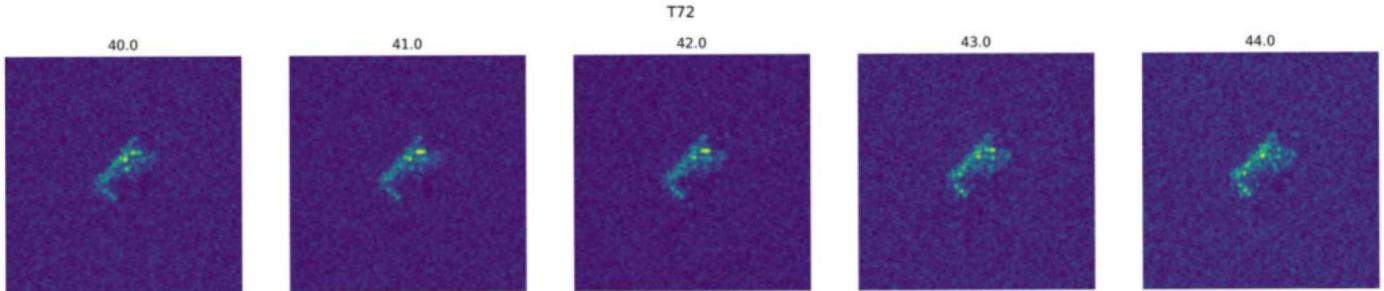
SAR images are significantly different than optical images.



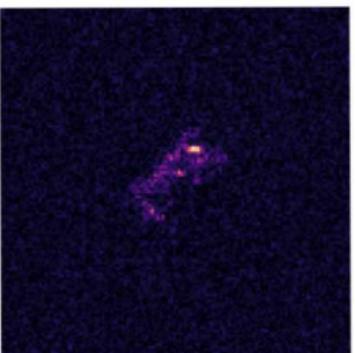
a. Optical b. SAR

Image from https://www.researchgate.net/figure/Comparison-of-the-optical-images-of-Earth-surface-and-the-SAR-image-a-Optical-satellite_fig2_301598943

SAR Automatic Target Recognition (ATR) is difficult.



Standard Deviation



Problem Overview

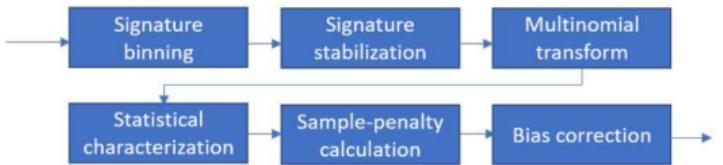
State-of-the-Art

Siamese Variational Autoencoder

Results

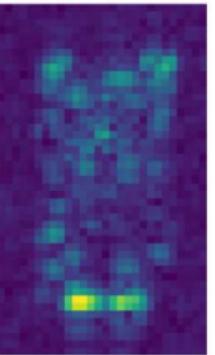
Future Work

The state-of-the-art SAR ATR algorithm is Multinomial Pattern Matching (MPM).

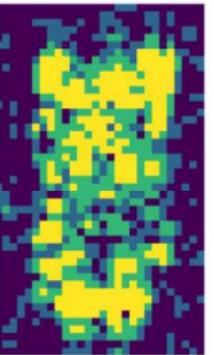
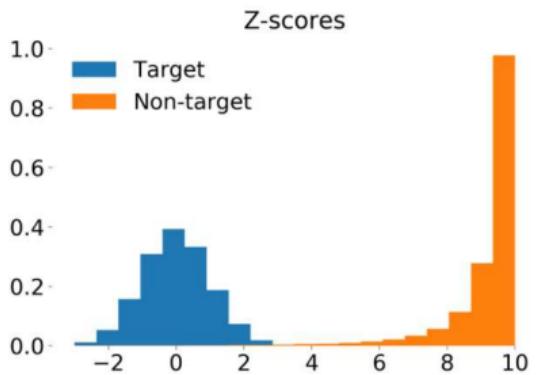


Multinomial Transform

Image



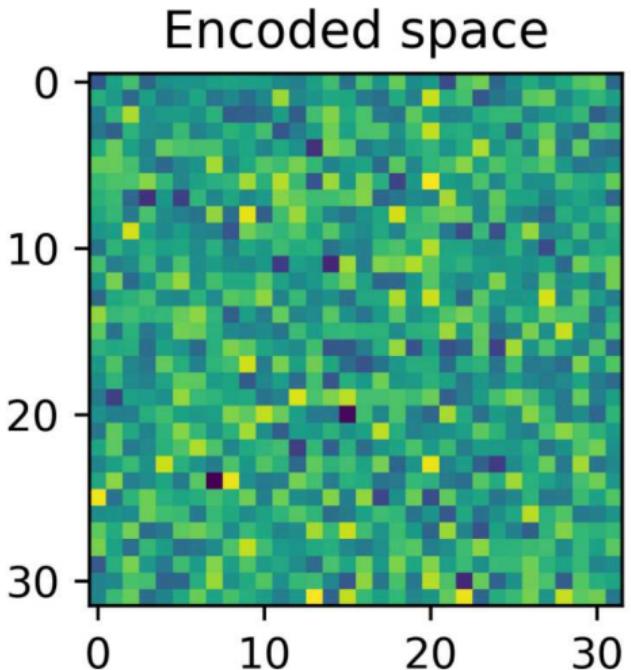
Quantized Image



$$Z = \frac{1}{C} \sum_{k=1}^K t_{k,q_k}$$

We would like to improve upon MPM using deep learning.

- Can we bin at larger geometry bins?
- Can we become shift invariant?
- Can we remove the need for a mask?
- Can we enable low-shot learning by synthesizing data?



Problem Overview

State-of-the-Art

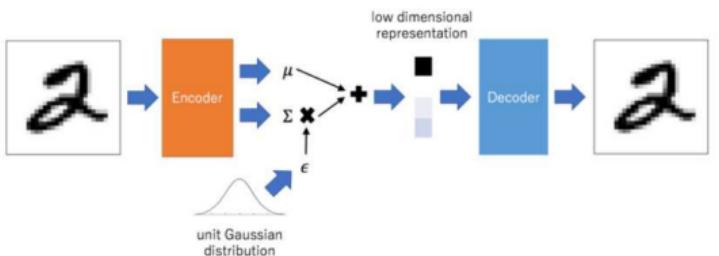
Siamese Variational Autoencoder

Results

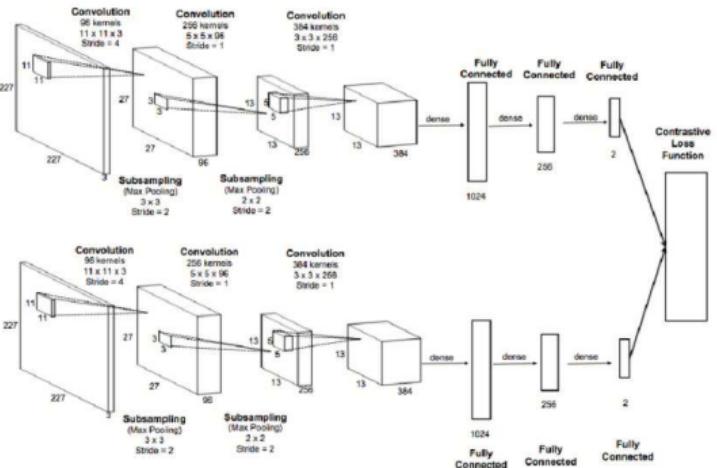
Future Work

Some background on applicable deep architectures.

Variational Autoencoder



Siamese Network



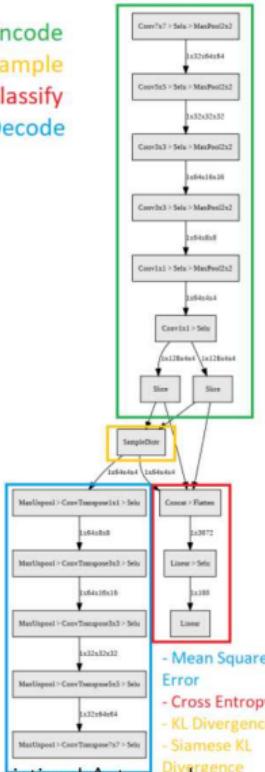
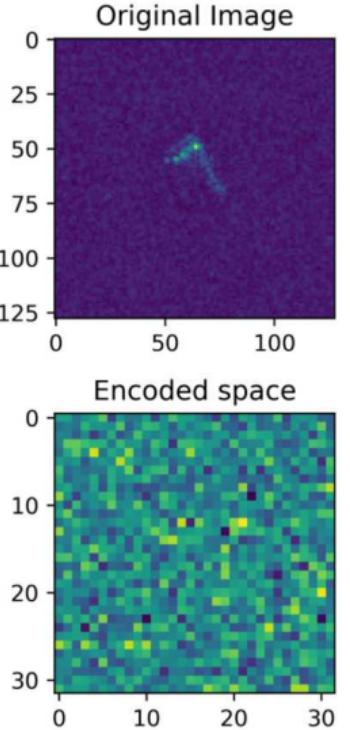
<https://www.semanticscholar.org/paper/>

A-Deep-Siamese-Neural-Network-Learns-the-Similarity-Rao-Wang/

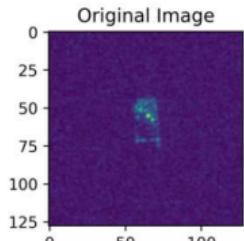
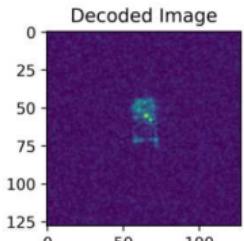
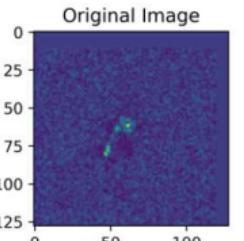
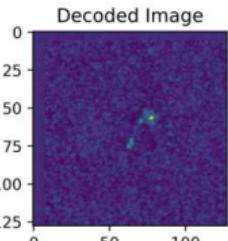
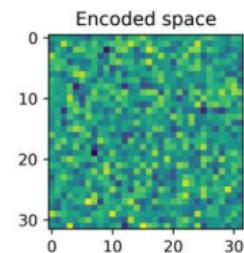
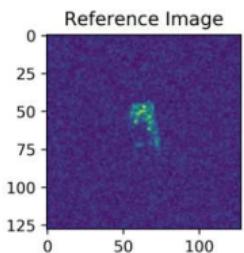
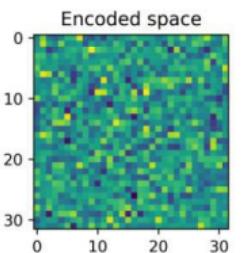
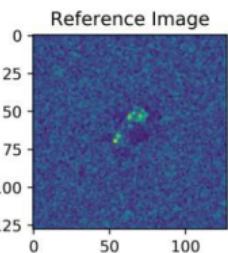
3e16932979250e66cd2cb4d8c9a5411e195273be

We propose a Siamese Variational Autoencoder (SVAE).

Encode
Sample
Classify
Decode



Example outputs from SVAE.



Problem Overview

State-of-the-Art

Siamese Variational Autoencoder

Results

Future Work

We have run several experiments for MPM.

SVAE Training Information

- Trained using synthetic data spanning 25-35 degrees depression angle
- Trained using binning of 20 degrees aspect angle for reference

TMPM Training Information

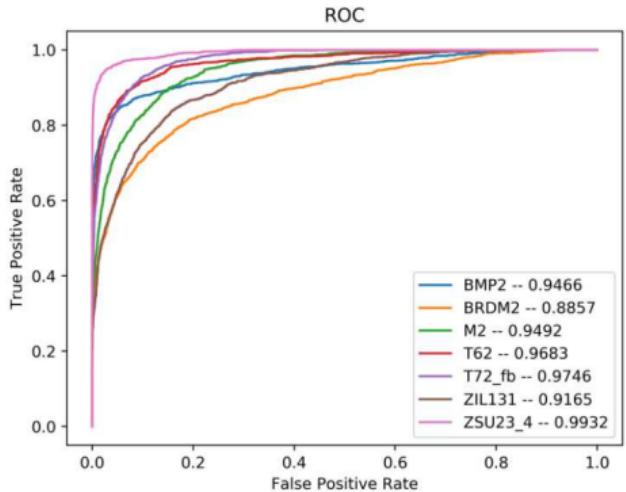
- Trained on 25-30 degrees depression angle
- Tested on 31-35 degrees depression angle

Experiments

- Train TMPM directly on data, bin in 5 degrees and 20 degrees, with masks
- Train TMPM directly on data, bin in 5 degrees and 20 degrees, without masks
- Train TMPM on embedding, bin in 5 degrees and 20 degrees
- Train TMPM on embedding, bin in 5 degrees and 20 degrees, with shifts in data

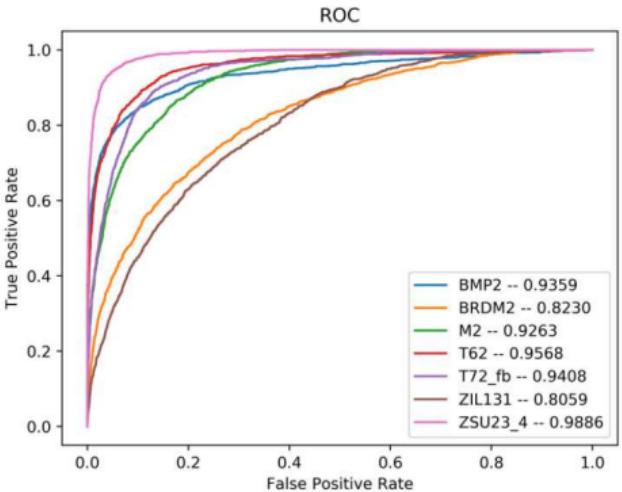
Baseline MPM – with masks

5 degrees



84.5% Accurate

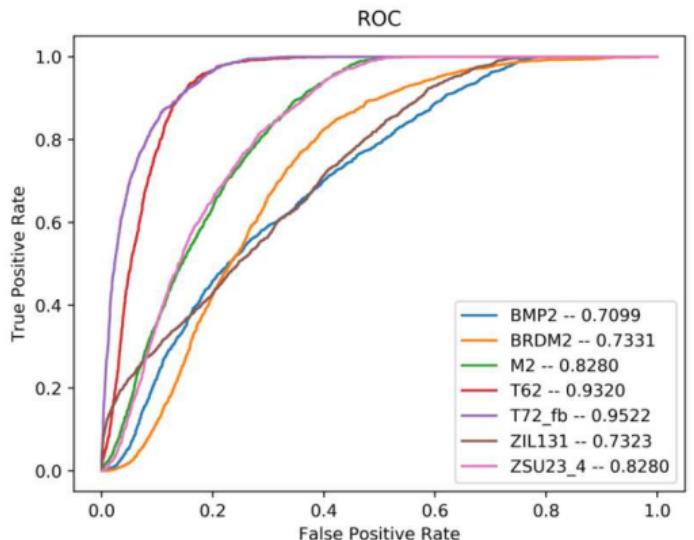
20 degrees



73.5% Accurate

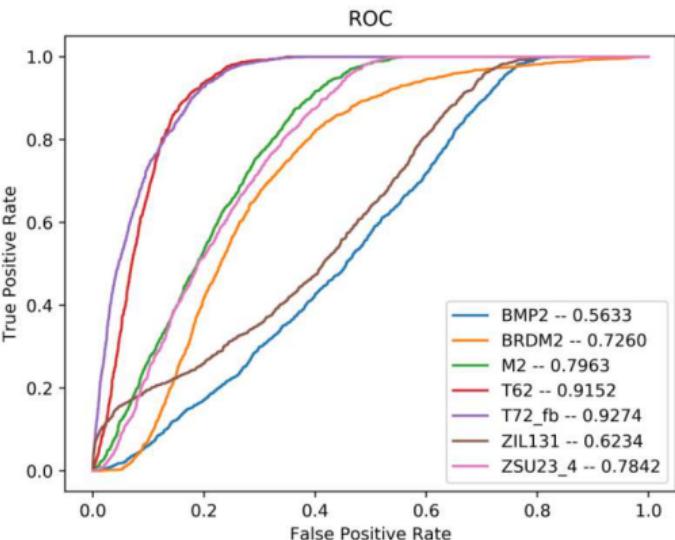
Baseline MPM – no masks

5 degrees



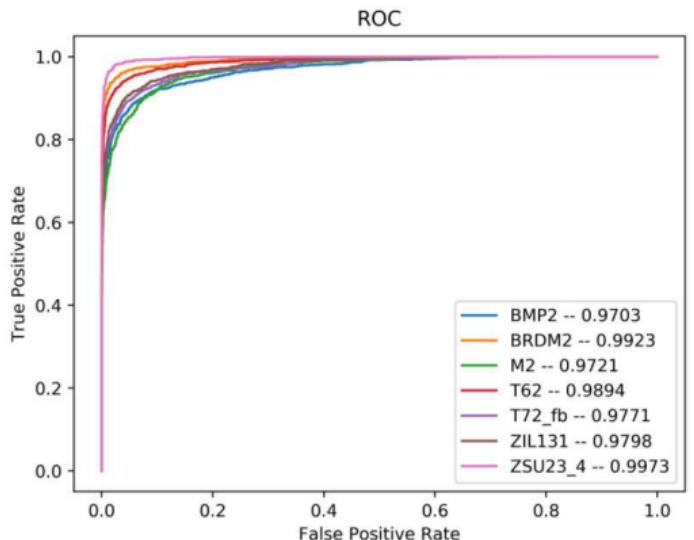
76.4% Accurate

20 degrees



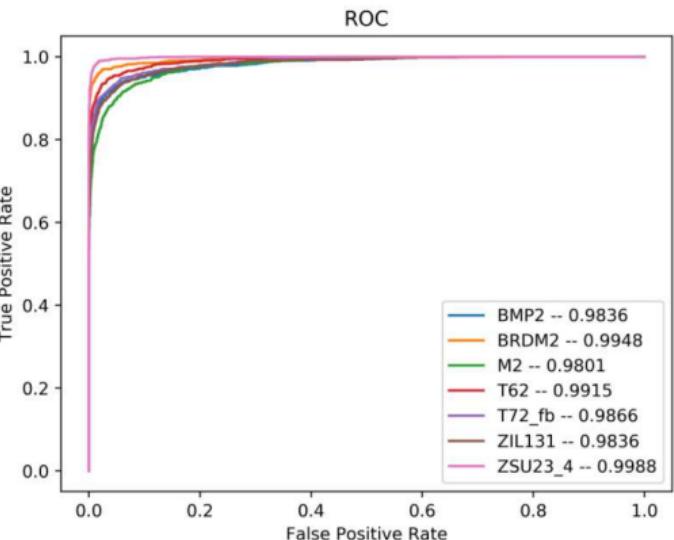
55.6% Accurate

5 degrees



99.9% Accurate

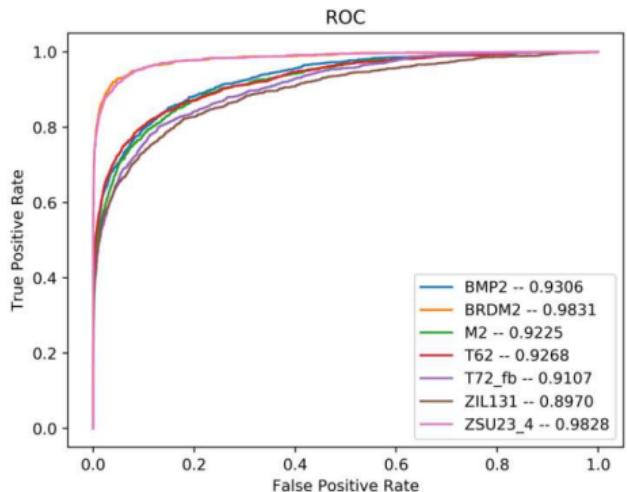
20 degrees



99.97% Accurate

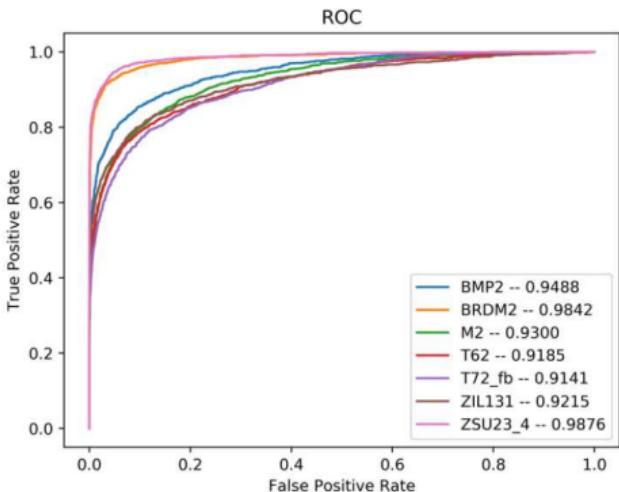
SVAE – shifted

5 degrees



97.6% Accurate

20 degrees



98.6% Accurate

Problem Overview

State-of-the-Art

Siamese Variational Autoencoder

Results

Future Work

Future Work

- Train SVAE on reduced number of targets to reduce data overlap
- Low-shot learning using SVAE from synthetic data
- Hyperparameter tuning of TMPM in this new space
- Analyze trade-offs between bin geometry and performance
- Train on synthetic, test on real
- Evaluate on data from multiple sensor models