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SAR images are significantly different than optical images.

a. Optical b. SAR

Image from https://rwm.researchgate.net/figure/

Comparison of the optical images of Essth surface and the SAR image a Optical satellite_
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SAR Automatic Target Recognition (ATR) is difficult.
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The state-of-the-art SAR ATR algorithm is Multinomial
Pattern Matching (MPM).
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We would like to improve upon MPM using deep learning.

M.D

• Can we bin at larger geometry bins?

• Can we become shift invariant?

• Can we remove the need for a mask?

• Can we enable low-shot learning by
synthesizing data?
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Siamese Variational Autoencoder
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Some background on applicable deep architectures.

Variational Autoencoder

low dimensional
representation

1::;:+4 N.0
unit Gaussian
distribution

Siamese Network

https :Hem, sementicscholer. org/paper/

A-Dawp-Siamesa-Neural-Network-Learns-tha-similarity-Rao,ang/

36169329792501.8.2c64d8c9a5411e195273.
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We propose a Siamese Variational Autoencoder (SVAE).
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Example outputs from SVAE.
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We have run several experiments for MPM.

M.D

SVAE Training Information

• Trained using synthetic data spanning

25-35 degrees depression angle

• Trained using binning of 20 degrees

aspect angle for reference

TMPM Training Information

• Trained on 25-30 degrees depression
angle

• Tested on 31-35 degrees depression

angle

Experiments

• Train TMPM directly on data, bin in

5 degrees and 20 degrees, with masks

• Train TMPM directly on data, bin in

5 degrees and 20 degrees, without

masks

• Train TMPM on embedding, bin in 5

degrees and 20 degrees

• Train TMPM on embedding, bin in 5
degrees and 20 degrees, with shifts in

data
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Baseline MPM - with masks
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Baseline MPM - no masks

5 degrees

ROC

L 0 -

0.8 -

I,P1' 0.6 -

0.4 -

if

0.2 -

0.0

- BMP2 -- 0.7099

- BRDM2 -- 0.7331

- M2 -- 0.8280

- T62 -- 0.9320

- T72_fb -- 0.9522

- ZIL131 -- 0.7323

- ZSU23_4 -- 0.8280

0.0 0.2 0.4 0.6
False Positive Rate

76.4% Accurate

20 degrees

ROC

1.0 -

0.8 -

2

0.6 -
`1'

iv 0.4 -
2

0.2 -

0.0 -

- BMP2 -- 0.5633

- BRDM2 -- 0.7260

- M2 -- 0.7963

- T62 -- 0.9152

- T72_fb -- 0.9274

- ZIL131 -- 0.6234

ZSU23_4 -- 0.7842

0.8 1.0 0.0 0.2 0.4 0.6
False Positive Rate

55.6% Accurate

0.8 1.0

Resu Its 15 / 19



SVAE
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SVAE - shifted
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Future Work

• Train SVAE on reduced number of targets to reduce data overlap

• Low-shot learning using SVAE from synthetic data

• Hyperparameter tuning of TMPM in this new space

• Analyze trade-offs between bin geometry and performance

• Train on synthetic, test on real

• Evaluate on data from multiple sensor models
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