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3 | Motivation

> Compressive sensing (CS) techniques show promise for sensors that collect information with fewer samples
than traditional systems.

° CS systems require a computationally-intensive optimization routine to reconstruct the signal into its
traditional form — something a human can understand.

> Machine learning algorithms are increasingly being used to perform tasks.

o If a machine is going to perform the task, why bother putting the data into a form a human can
understand?

o If the machine learning task can be performed on the CS data in its raw form, then the reconstruction is
unnecessary. Benefits of this paradigm include:

> Reduced computational requirements
° Faster decision time

> Simpler machine learning algorithm

> Results for a compressive sensing snapshot imaging spectrometer (CSSIS) are presented.




4 | CSSIS Geometry

Filter Array

Filtered Light

Broadband Light

° Spatially-tiled filters are placed in front of each pixel of an array detector.

° The filters can be Fabry-Perot etalons, liquid crystal devices, dielectric stacks, nano-antenna arrays, or any
other technology that allows the spectral transmittance to be varied from one element to another.




5 | CSSIS Benefits

o

The CSSIS potentially has increased spectral resolution.

° Traditional digital cameras use a 2x2 array to make measurements in 3 spectral bins (red, green, blue).
o Traditional tiled array spectrometers use an NxN array to make N? measurements.

° By appropriately designing the filters, compressive sensing techniques can allow more spectral bins than
measurements.

o

The CSSIS potentially has increased optical throughput.

° Traditional tiled array spectrometers use a set of narrowband spectral filters. Most of the light hitting an individual
filter is lost.

> The CSSIS can use filters with high average transmittance across the system passband.

o}

The CSSIS filters are potentially easier to fabricate.

° Traditional tiled array spectrometers often use spectral filters with sharp edges, which are hard to fabricate.
o The CSSIS filters do not need sharp edges.

o

By using CS techniques, the trade-space between spectral resolution, spatial resolution, and area coverage 1s
positively impacted.




¢ I Spectral Super-Resolution

o

Question: Can the CSSIS outperform a traditional tiled spectrometer in terms of spectral resolution?

o}

A 7x7 array CSSIS with Fabry-Perot etalons was simulated for the wavelength regime of 7.8 to 12.7 pm.

o Mirror reflectances were all 80%.
o Mirror thicknesses ranged from 47.33 to 99.24 pm.

> A compression factor of 4X 1s used.

o}

A 7x7 array traditional tiled array spectrometer was simulated for comparison.

o Ideal, non-overlapping filters with unity transmittance and a spectral width of 1/49% of the spectral regime were
simulated.

° 'Two spectra were simulated.

(¢]

No spatial variation in spectral content was assumed.




7 I Spectral Super-Resolution: Input Spectra
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« The spectra are shown here with 196 samples across the pass-band.



s I Spectral Super-Resolution: CSSIS Measurements

CS Measurements
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« The signal level for each of the 49 Fabry-Perot filters is shown for each spectrum.
* Measurement 1 corresponds to the response seen for Spectrum 1.

* Measurement 2 corresponds to the response seen for Spectrum 2.



9 | Spectral Super-Resolution: Results
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« The traditional spectrometer does not have sufficient resolution to sense the peaks in Spectrum 2.

« With the same number of measurements, the CSSIS can reconstruct these peaks.



0o | Spectral Classification

> Question: How does the performance of a classification task for the CSSIS compare to that of the
traditional tiled array spectrometer?

° For this, real-world spectra were simulated along with a radiometrically-accurate sensor model.
° The Indian Pines data set was used to generate 17 spectra for a classification study.

° The Indian Pines data set is a 145x145 hyperspectral image collected over the Purdue University agronomy
farm in West Lafayette, Indiana.

° The spectrometer was AVIRIS (Airborne Visible/Infrared Imaging Spectrometer).
o 220 spectral bands from 0.4 to 2.5 um.

> For each of the 17 classes, the spectral average of all members were calculated.




11 | Spectral Classification: Indian Pines Data Set
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12 | Spectral Classification

o

A simulated sensor was used:
° 12-bit analog-to-digital converter

o Full well-depth of 100,000 electrons

o 4 electron read-noise

o

For the traditional spectrometer, ideal non-overlapping filters with unity transmittance were simulated.

o}

For the CSSIS, .LCDs were simulated.
> The LCD voltages were determined via an optimization to minimize the coherence of the sensing matrix.

> Reconstruction was performed by minimizing the total variation of the Haar wavelets.

(¢]

Gaussian background noise was assumed present as well.

o

For each spectral class, 1,000 measurements were simulated with 70% used for training and 30% used for
testing,

o

A simple k-Nearest Neighbor classifier was used.




| Spectral Classification: Reconstructions
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14 | Spectral Classification: Results
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* The classification task
performs best on the
CSSIS data in its raw
form.

 The classification task
performs worst on the

data collected with the
traditional spectrometer.



15 | Summary

o Compressive sensing (CS) techniques are finding utility in a wide range of sensing modalities, including
SPECtroscopy.

° By appropriately designing filters, a tiled array spectrometer can be combined with CS principles to design a
snapshot imaging spectrometer.

° This spectrometer has the potential to significantly impact the trade between spectral resolution, spatial
resolution, and field-of-view.

> Machine learning tasks can be more successful when operating on the CS data in its raw form, especially
when noise 1s present.

° By performing the tasks in this domain, benefits such as increased speed and reduced computational
requirements can be realized.

° The paper associated with this presentation includes other results not presented here.
> Reconstruction performance of the CSSIS with spatial variations in the input spectrum is analyzed.

o Classification performance on the Indian Pines data set with real-world intraclass variation is presented.




