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3 Motivation •

O Compressive sensing (CS) techniques show promise for sensors that collect information with fewer samples
than traditional systems.

O CS systems require a computationally-intensive optimization routine to reconstruct the signal into its
traditional form — something a human can understand.

O Machine learning algorithms are increasingly being used to perform tasks.

O If a machine is going to perform the task, why bother putting the data into a form a human can
understand?

O If the machine learning task can be performed on the CS data in its raw form, then the reconstruction is
unnecessary. Benefits of this paradigm include:

o Reduced computational requirements

o Faster decision time

O Simpler machine learning algorithm

Results for a compressive sensing snapshot imaging spectrometer (CSSIS) are presented.



4 I CSSIS Geometry
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o Spatially-tiled filters are placed in front of each pixel of an array detector.

o The filters can be Fabry-Perot etalons, liquid crystal devices, dielectric stacks, nano-antenna arrays, or any
other technology that allows the spectral transmittance to be varied from one element to another.



5 CSSIS Benefits

O The CSSIS potentially has increased spectral resolution.
o Traditional digital cameras use a 2x2 array to make measurements in 3 spectral bins (red, green, blue).

o Traditional tiled array spectrometers use an NxN array to make N2 measurements.

o By appropriately designing the filters, compressive sensing techniques can allow more spectral bins than
measurements.

O The CSSIS potentially has increased optical throughput.
o Traditional tiled array spectrometers use a set of narrowband spectral filters. Most of the light hitting an individual

filter is lost.

o The CSSIS can use filters with high average transmittance across the system passband.

O The CSSIS filters are potentially easier to fabricate.
o Traditional tiled array spectrometers often use spectral filters with sharp edges, which are hard to fabricate.

o The CSSIS filters do not need sharp edges.

o By using CS techniques, the trade-space between spectral resolution, spatial resolution, and area coverage is
positively impacted.

•



6 Spectral Super-Resolution

o Question: Can the CSSIS outperform a traditional tiled spectrometer in terms of spectral resolution?

O A 7x7 array CSSIS with Fabry-Perot etalons was simulated for the wavelength regime of 7.8 to 12.7 vtm.

O Mirror reflectances were all 80%.

O Mirror thicknesses ranged from 47.33 to 99.24 [tm.

O A compression factor of 4X is used.

O A 7x7 array traditional tiled array spectrometer was simulated for comparison.

O Ideal, non-overlapping filters with unity transmittance and a spectral width of 1/49th of the spectral regime were
simulated.

o Two spectra were simulated.

No spatial variation in spectral content was assumed.

•



7 I Spectral Super-Resolution: Input Spectra
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• The spectra are shown here with 196 samples across the pass-band.



8 I Spectral Super-Resolution: CSSIS Measurements
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• The signal level for each of the 49 Fabry-Perot filters is shown for each spectrum.

• Measurement 1 corresponds to the response seen for Spectrum 1.

• Measurement 2 corresponds to the response seen for Spectrum 2.



9 I Spectral Super-Resolution: Results
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• The traditional spectrometer does not have sufficient resolution to sense the peaks in Spectrum 2.

• With the same number of measurements, the CSSIS can reconstruct these peaks.

•

1
1



10 I Spectral Classification

o Question: How does the performance of a classification task for the CSSIS compare to that of the
traditional tiled array spectrometer?

o For this, real-world spectra were simulated along with a radiometrically-accurate sensor model.

o The Indian Pines data set was used to generate 17 spectra for a classification study.

o The Indian Pines data set is a 145x145 hyperspectral image collected over the Purdue University agronomy
farm in West Lafayette, Indiana.

o The spectrometer was AVIRIS (Airborne Visible/Infrared Imaging Spectrometer).

o 220 spectral bands from 0.4 to 2.5 vim.

o For each of the 17 classes, the spectral average of all members were calculated.



11 Spectral Classification: Indian Pines Data Set

Er-
Stone-steel towers
Bldg-Grass-Tree-Drives
Woods
Wheat
Soybean-clean
Soybeans-min
Soybeans-notill
Oats
Hay-windrowed
Grass/pasture-mowed
G rass / Trees
Grass/Pasture
Corn
Corn-min
Corn-notill
Alfalfa
background



12 Spectral Classification

O A simulated sensor was used:
O 12-bit analog-to-digital converter

O Full well-depth of 100,000 electrons

O 4 electron read-noise

O For the traditional spectrometer, ideal non-overlapping filters with unity transmittance were simulated.

O For the CSSIS, LCDs were simulated.

O The LCD voltages were determined via an optimization to minimize the coherence of the sensing matrix.

O Reconstruction was performed by minimizing the total variation of the Haar wavelets.

O Gaussian background noise was assumed present as well.

O For each spectral class, 1,000 measurements were simulated with 70% used for training and 30% used for
testing.

O A simple k-Nearest Neighbor classifier was used.

•



1 3 Spectral Classification: Reconstructions
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14 I Spectral Classification: Results
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• The classification task
performs best on the
CSSIS data in its raw
form.

• The classification task
performs worst on the
data collected with the
traditional spectrometer.
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15 Summary

O Compressive sensing (CS) techniques are finding utility in a wide range of sensing modalities, including
spectroscopy.

O By appropriately designing filters, a tiled array spectrometer can be combined with CS principles to design a
snapshot imaging spectrometer.

O This spectrometer has the potential to significantly impact the trade between spectral resolution, spatial
resolution, and field-of-view.

O Machine learning tasks can be more successful when operating on the CS data in its raw form, especially
when noise is present.

O By performing the tasks in this domain, benefits such as increased speed and reduced computational
requirements can be realized.

O The paper associated with this presentation includes other results not presented here.
O Reconstruction performance of the CSSIS with spatial variations in the input spectrum is analyzed.

o Classification performance on the Indian Pines data set with real-world intraclass variation is presented.


