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Atomic precision advanced manufacturing (APAM)

STM-based fabrication of physics-
focused devices 
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Fueschle, Nat. Nano (2012)

UNSW, SNL (historically), NIST

Sandia project targeting microelectronics

6r5 nm

Tooling cost of successive generations
climbs exponentially.

10 nm

Relax manufacturability —
explore opportunities in
microelectronics at the
atomic limit now
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Sandia goal: Increase sophistication of APAM devices

Aluminum contact

2018 2021 goal 
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Si(100)

Device cross section

Surface gate

Donors and acceptors

Well doping

Device cross section
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Contact isolation

Need more sophisticated devices to find application
to microelectronics...
• high gain   Requires development of surface gates.
• room temperature operation Useful for atomic precision quantum devices too!
• complementary transistors
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How does APAM work?

"Chemical contrast" at Si surface 
• Unterminated Si: 1 reactive bond/ atom
• H-terminated Si: unreactive

STM Tip
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Phosphine produces donor-based devices
Top view

Low temp. Si cap
Donor device

Si(100)

Device cross section
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Phosphorus 'donates' an electron to silicon.
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Why is gating an APAM device hard?

Water, hydrocarbons

Before APAM

Silicon cleaning step destroys any
front-end-of-line processing

APAM

Donor diffusion Iimits most back-end-of-line processes,
so community uses in-plane gates made with APAM.

Donor device
Si(100)

After APAM
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Back-end-of-line fabrication process (after APAM)

• Si Substrate Si02 Epi-Si Oxide

Arsenic Implant 6 Layer Aluminum

1. Device as it arrives in BEOL after STM
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4. Aluminum top gate defined by EBL is
deposited over patterned device.

2. Low temperature oxide deposition
(many choices)
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3. Vias are etched through oxide, Si Cap,
remaining oxide, and into the implanted
region

5. Aluminum contacts are deposited into
vias and connect to macroscopic bond pads
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Nanowires for gate oxide evaluation
1. Pattern nanowire.
2. Deposit range of dielectrics with a range of recipes.
3. If nanowire no longer conducts, discard recipe.
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Gate oxide

Donor device
Si(100)
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50 nm CVD SiO2 at 250 C

VSD (V)

Wire survives, for ALD A1203
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n-p ane and surface gates qualitatively similar
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ln-p ane and surface gates qualitatively similar
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30 nm ALD A1203

30 nm Si cap

SET device
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In-plane and surface gates qualitatively similar
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Unclear why these are so similar
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30 nm ALD A1203

30 nm Si cap

SET device

VG (V) 11



Improved gate range
MOS Gate

30 nm ALD AlOx

30 nm Si cap

SET device
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In-plane gate

MOS gate
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VG (V)

Expect low leakage to +/- 10 V in next design (need to isolate metal from silicon)
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Gate hysteresis

Repeat gate sweep across charge lines —
should be straight

Surface gate is less (glitchy
Surface gate is more hysteretic
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What's next?

1. Diffusion barriers to improve interface quality

ALD A1203

Si cap

SET device

ALD Al,01
TiN barrier

Si02 barrier

Requires significant process development:
- Low temperature Si02
- Dual evaporation of metal
- Etched metal (not liftoff()
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What's next?

2. Quality of low temperature materials — e.g. Si cap, oxide
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Conclusion

1
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Well doping

y Donors and acceptors

Device cross section

Surface gate

Contact isolation
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Surface gate applicable to both APAM physics-focused devices and ultra-scaled transistors
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