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2‘ Frequency mixing — from electronics to optics

Electronics - signal processing: modulators, phase detectors, frequency synthesizers,
heterodyne, etc.

Ideal Mixer
(Multiplier)

put __,omx = Flectronics component dimensions << wavelengths

Signal Signal

I

Local

Cscleter Variety of frequency conversion effects:
Second Harmonics Generation (SHG)
Third Harmonics Generation (THG)

Sum frequency Generation (SFG)

etc.

* Nonlinear optics

P(t) = eo(XxVE@®) + xPE* () + xOE3(¢) +...)

Phase matching (dispersion) is critical
Nonlinear crystal dimensions >> wavelengths




“Super” frequency mixing?

TH=

Can we see all of these mixings at the same time?

Require:

« Relaxed phase matching

« Strong nonlinear materials
« High field intensity



Nonlinear Photonic Metasurfaces
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Kauranen, M., and Zayats, A. V. Nature Photonics, 6(11), M .R. Shcherbakov, et. al. Nano Letters 14, 11,
737, (2012) 6488-6492, 2014
« Surface/Local Plasmon resonances Dimensions < wavelength

* Mie resonances l 1
Resonant enhancement of EM field Relaxed phase matching conditions




. Nonlinear plasmonics ©

a Metasurfaces for SHG
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-

Li, G., Zhang, S. and Zentgraf, T., “Nonlinear photonic
metasurfaces” Nature Reviews Materials, (2017), 2(5), Butet, Jérémy, et al. Nano letters 10.5 (2010): 1717-1721.
p.17010
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Plasmonic metasurfaces:
e Ohmic losses

<

 Plasmonic structure: small modal volume
(surface nonlinearities)

A (nm) SHG efficiency ~ 5.1x10-1° W/W?
467514 593 700 812

Sartorello, et al. ACS Photonics 3.8 (2016): 1517-1522.




Mie resonances in dielectric spheres

Extinction coefficient

Mie resonances in Dielectric spheres
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Geffrin, J.-M., et al. Nat. Commun. 3, 1171, 2012

Mie resonances
* Low losses
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 Much larger mode volume
* High nonlinear coefficient materials
(GaAs: ~200pm/V)




Nonlinear dielectric metasurfaces
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Multiple frequency mixing in dielectric metasurfaces




| GaAs based dielectric metasurface

SEM image
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Single beam experiment
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2nd 3rd 4th harmonic generation spectra

Photon energy (eV)
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Two-beam experiment
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Frequency mixing spectra
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Frequency mixing spectra
11 peaks Photon energy (eV)
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7 different nonlinear processes: 2nd, 3rd, 4th harmonics, sum frequency
generation, 4 wave-mixing, six-wave mixing, PL induced by two-photon
absorption




Frequency mixing spectra

11 spectral peaks
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Frequency mixing spectra: six wave mixing

11 spectral peaks

16

Photon energy (eV)
325 300 275 250 225 200 175 150 1.25

0.10F . . :
SFG SHG o,
—~0.08}
= w,+2w, 4o~w, tw, 2w,~0,
© ! .
£ 091 THG o, | THG o, | SHG o,
£002f 'oA 4
0.00 ' ' -
400 500 600 700 800 900 1000
Wavelength (nm)
Wavelength shift SWM power dependence
] 3 | = (O
- - : © 0 FW1-W)
W S bbb Sos ,
t > {‘a }, =0.6f
- = H . 7]
1 ) . c 0.4}
c 05¢ o
SWM £ 02
g 0.0

0.0 A EaTa
560 570 580 590 0-1 2.345 6 7
Wavelength (nm) o, Power (uW)




_|Temporal dynamics of frequency mixing
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_|Temporal dynamics of frequency mixing
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Our work Other Dielectric Plasmonic
metasurfaces Nanotructures
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« The even and odd order nonlinearities of GaAs enable our observation of
second-, third- and fourth-harmonic generation, sum-frequency generation,
two-photon absorption induced photoluminescence, four-wave mixing, and
six-wave mixing.

Liu, S.*, Vabishchevich, P. P.*, Vaskin, A., Reno, J. L., Keeler, G. A., Sinclair, M. B., ... & Brener, I.
(2017). An optical metamixer. arXiv preprint arXiv:1711.00090.




Enhancement of nonlinear processes in metasurfaces

20 SHG efficiency o
Efficiency: power of generated SHG/pump power
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SHG efficiency
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Enhancement of nonlinear processes in metasurfaces

Efficiency: power of generated SHG/pump power
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Carletti, L., etal. Optics express 23.20, 26544-26550, 2015
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Liu, S. et. al. Nano letters 16.9, 5426-5432, 2016

Fano resonances and BIC modes:

Slit and bar metasruface design
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Metasurface with broken symmetry design
resonators: High-Q factor resonance
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Fano metasurface reflectance spectrum
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Experimental measurements
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‘ SHG in Fano metasurface

IR spectrometer
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‘ SHG spectra modification

The modification of a SHG spectrum when the pump carrier wavelength is
detuned from the Fano resonant wavelength

Reflectance
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| Nanodisk metasurface vs Fano metasurface |
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Polarization dependence of SHG
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GaAs (100) lattice plane
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GaAs (100) single disk and metasurface emission patterns
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Goal: Redirection of the SHG emission
to zeroth diffraction order in GaAs
metasurfaces

second harmonic/ntensity



. SHG in GaAs for different orientations of the crystal, (111), (110)
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Liu, S. et. al. Nano letters 16.9: 5426-5432, 2016

Fabrication of GaAs metasurface
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Fabrication of GaAs metasurface
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Liu, S. et. al. Nano letters 16.9: 5426-5432, 2016
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Experimental setup: Fourier-space imaging
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. SHG in GaAs (111) metasurface
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. SHG in GaAs (111) metasurface: Fourier-space image
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» SHG in GaAs (111) metasurface: Fourier-space image

Power dependence for the
zeroth-order diffraction
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Comparison: Fourier-space images for metasurfaces with
different crystallographic planes

(111) (100)
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Comparison: Fourier-space images for metasurfaces with
different crystallographic planes

(100)
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40‘ Conclusions

The even and odd order nonlinearities of GaAs enable our
observation of second-, third-and fourth-harmonicgeneration,
sum-frequency generation, two-photon absorption induced
photoluminescence, four-wave mixing, and six-wave mixing.

Nontrivial spectral shapingof second-harmonicspectrain
symmetry broken llI-V semiconductor metasurface.

We utilize llI-V semiconductor metasurface fabricated from GaAs
grown on (111) lattice plane to control the spatial distribution of
the SHG intensity. By changingthe orientation of the GaAs crystal
from (100) to (111) plane we were able to redistribute the SHG
generation to the zeroth diffraction order.

Liu, S.*, et. al, An optical metamixer. arXiv preprint arXiv:1711.00090, 2017
Vabishchevich, P, et. al ACS Photonics. 5 (5), pp 1685-1690,2018
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SHG in GaAs for different orientations of the crystal, (111),
a (110), (100)
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. Use of (111) GaAs/AlGaAs
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. Tlailoring of SHG in normal direction

Use of non-normal incidence Use of additional gratings

Angle of incidence
0° 15"

8838

Carletti, L., Nanotechnology, 28(11), 114005, 2017
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Ghirardini, L., Nano letters, 18(11), 6750-6755, 2018
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Xu, L., Rahmani, In Photonics (Vol. 5, No. 3, p. 29). Multidisciplinary Digital , . ,
Publishing Institute, 2018 Marino, G., ACS Photonics, Articles ASAP 2019
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Nonlinear optical frequency mixing in
45

nanostructures

Engineered structures that have specific optical properties on demand by choosing

materials, shapes and dimensions of the meta-atoms

 Resonant enhancement of EM field
 Relaxed phase matching conditions

Kauranen, M., and Zayats, A. V. (2012) “Nonlinear
plasmonics” Nature Photonics, 6(11),737.

a Metasurfaces for SHG

Li, G., Zhang, S. and Zentgraf, T., “Nonlinear photonic
metasurfaces” Nature Reviews Materials, (2017), 2(5), p.17010
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Sartorello,etal. ACS Photonics3.8 (2016):1517-1522.

e  Ohmic losses
*  Plasmonic structure: small modal volume
(surface nonlinearities)

SHG efficiency ~ 5x10-1° W/W?



