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Frequency mixing — from electronics to optics

Electronics - signal processing: modulators, phase detectors, frequency synthesizers,
heterodyne, etc.
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• Nonlinear optics

Output

Signal
• Electronics component dimensions « wavelengths

800 nm

400 n
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•

Variety of frequency conversion effects:
Second Harmonics Generation (SHG)
Third Harmonics Generation (THG)
Sum frequency Generation (SFG)
etc.

P(t) = Eo (x(1) E(t) + x(2) E2 (t) + x(3) E3 (t) .)

Phase matching (dispersion) is critical

Nonlinear crystal dimensions » wavelengths



3
"Super" frequency mixing?

.\. ?
•

Can we see all of these mixings at the same time?

Require:
• Relaxed phase matching
• Strong nonlinear materials
• High field intensity
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Nonlinear Photonic Metasurfaces
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Kauranen, M., and Zayats, A. V. Nature Photonics, 6(11),
737, (2012)

• Surface/Local Plasmon resonances
• Mie resonances

Resonant enhancement of EM field

M .R. Shcherbakov, et. al. Nano Letters 14, 11,
6488-6492, 2014

Dimensions < wavelength

Relaxed phase matching conditions



5 Nonlinear plasmonics
a Metasurfaces for SHG

. -41 6- I vi•I-i♦1 -4•- I;•I at-4•I Iti
•411664164114111641
1111141414111&&64111
4114141141•44&411141
illiall&šåll4111
11641411411111641£1141
i1141•4114Ii•••
114111•411111/1•111

,--- -..,
- - --

---- Rod
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Butet, Jérémy, et al. Nano letters 10.5 (2010): 1717-1721.
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Plasmonic metasurfaces:
• Ohmic losses
• Plasmonic structure: small modal volume

(surface nonlinearities)

SHG efficiency — 5.1x10-1°W/W2

Sartorello, et al. ACS Photonics 3.8 (2016): 1517-1522.
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Mie resonances in dielectric spheres
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Mie resonances in Dielectric spheres
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LMi
e resonances
• Low losses
• Much larger mode volume
• High nonlinear coefficient materials
(GaAs: -200pm/V)

•
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Nonlinear dielectric metasurfaces
7

Third Harmonic Generation

centrosymmetric

Si
Ge

M .R. Shcherbakov, et. al. Nano Letters 14,
11, 6488-6492, 2014

Non-centrosymmetric

GaAs
AIGaAs

https://www.wikipedia.org

I.2x
.3

Four-Wave Mixing High-Harmonic Generation

Grinblat, G., et al, ACS Photonics
4, 2144-2149, 2017

Second Harmonic Generation (10-8 W/W2)
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Liu, Hanzhe, et al. Nature
Physics 14.10,1006, 2018

AlGaAs — Carletti, L., et al. Optics express 23.20, 26544-26550, 2015
Camacho-Morales, R., et al. Nano letters 16.11, 7191-7197, 2016
Kruk, S.et al. Nano Lett., 17 (6), pp 3914-3918, 2017
GaAs — Liu, S. et. al. Nano letters 16.9, 5426-5432, 2016

200

L. Carletti et al., ACS Photonics,
3(8), 1500-1507, 2016
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GaAs based dielectric metasurface

Reflectivity spectrum
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• High nonlinear coefficient material
• Resonance enhancement of EM field
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Single beam experiment
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2nd, 3rd, 4th harmonic generation spectra
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Two-beam experiment
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Frequency mixing spectra
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Frequency mixing spectra

1 1 peaks
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7 different nonlinear processes: 2nd, 3rd, 4th harmonics, sum frequency
generation, 4 wave-mixing, six-wave mixing, PL induced by two-photon
absorption



Frequency mixing spectra
11 spectral peaks

0.10

-- 0.08D

(-2- 0.06
>,

"E) 0.04

-:. 0.02

0.00

3.25 3.00

Photon energy (eV)

2.75 2.50 2.25 2.00 1.75 1.50 1.25

(01+20)2 4w1-w2
1
: 2w1+w2

,
THG W

2 1
I THG w1 SHG 00• 1 11 111

1
k 

400 500 600 700
Wavelength (nm)

SFG power dependence

SFG

1.0
cci 0.8
>, 0.6
'7)
c 0.4
a)
-'

0.2

0.0

:

: ./.„ .

•

-
: _ Linear Fit

.001-K02

• 
0 2 4 6 8

CO2 
Power (mW)

SFG SHG 001

co

800

if
t 1-
FWM (2)

2w2-w

x0.1

1$

1I
o

) f%
900 1000

‘I

FWM power dependence

; to
(.6 0.8
>, 0.6

.7) 0.4c
0 0.2
-EI— 0.0

0 2 4 6 8 10
co1 Power (mW)



Frequency mixing spectra: six wave mixing
11 spectral peaks
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Temporal dynamics of frequency mixing
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Temporal dynamics of frequency mixing
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Our work Other Dielectric Plasmonic
metasurfaces Nanotructures
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THG THG THG
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FHG THG SHG FWM (1) SFG SWM TPA PL FWM (2)

• The even and odd order nonlinearities of GaAs enable our observation of
second-, third- and fourth-harmonic generation, sum-frequency generation,
two-photon absorption induced photoluminescence, four-wave mixing, and
six-wave mixing.

Liu, S.*, Vabishchevich, P. P.*, Vaskin, A., Reno, J. L., Keeler, G. A., Sinclair, M. B., ... Et Brener, I.
(2017). An optical metamixer. arXiv preprint arXiv:1711.00090.



Enhancement of nonlinear processes in metasurfaces
20 SHG efficiency
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1 Enhancement of nonlinear processes in metasurfaces
21 SHG efficiency
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Fano resonances and BIC modes:
Slit and bar metasruface design
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Metasurface with broken symmetry design
resonators: High-Q factor resonance
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Fano metasurface reflectance spectrum

Experimental measurements
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SHG in Fano metasurface
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25 I SHG spectra modification
The modification of a SHG spectrum when the pump carrier wavelength is
detuned from the Fano resonant wavelength
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I Nanodisk metasurface vs Fano metasurface
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Polarization dependence of SHG
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GaAs (100) lattice plane
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[1 00]

GaAs (100) single disk and metasurface emission patterns
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Goal: Redirection of the SHG emission
to zeroth diffraction order in GaAs

metasurfaces



31 SHG in GaAs for different orientations of the crystal, (111), (110)
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Fabrication of GaAs metasurface
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ICP etching I

Fabrication of GaAs metasurface
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Experimental setup: Fourier-space imaging
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SHG in GaAs (111) metasurface
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SHG in GaAs (111) metasurface: Fourier-space image
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37 SHG in GaAs (111) metasurface: Fourier-space image
Power dependence for the
zeroth-order diffraction
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Comparison: Fourier-space images for metasurfaces with
38 different crystallographic planes
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Comparison: Fourier-space images for metasurfaces with
39 different crystallographic planes
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Conclusions

• The even and odd order nonlinearities of GaAs enable our
observation of second-, third- and fourth-harmonicgeneration,
sum-frequencygeneration, two-photon absorption induced
photoluminescence, four-wave mixing, and six-wave mixing.

• Nontrivial spectral shaping of second-harmonic spectra in
symmetry broken lll-V semiconductor metasurface.

• We utilize lll-V semiconductor metasurface fabricated from GaAs
grown on (111) lattice plane to control the spatial distribution of
the SHG intensity. By changingthe orientation ofthe GaAs crystal
from (100) to (111) plane we were able to redistribute the SHG
generation to the zeroth diffraction order.
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SHG in GaAs for different orientations of the crystal, (111),
(110), (100)
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„ Use of (111) GaAs/AIGaAs
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Absence of SHG under normal incidence

Non-zero SHG signal for
(111) Lattice plane under normal

incidence
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Reflectance spectrum
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Tailoring of SHG in normal direction
Use of non-normal incidence

Angle of incidence
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Nonlinear optical frequency mixing in nanostructures

Engineered structures that have specific optical properties on demand by choosing
materials, shapes and dimensions of the meta-atoms

• Resonant enhancement of EM field
• Relaxed phase matching conditions
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• Ohmic losses
• Plasmonic structure: small modal volume

(surface nonlinearities)

SHG efficiency - 5x1 0-1° W/W2


