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Overview

— Introduction & Motivation
— Formulation:

¢ PDE-constrained optimization for frequency-response design

¢ Modified Error-In-Constitutive-Equations Approach for Frequency-Response Design
—  Design Results

¢ Parameter selection

¢ Vibration Isolation

¢ Frequency-response matching

— Future Directions

Dukeumvensnv % 3|47




Designing for dynamic response

Dynamic Response Design

* Spectral properties, transient response

* Frequency-domain steady-state response (FRF)

Components of a PDE-constrained design framework:

+ Governing PDE constraints
* Design representation

+ Objective and/or constraints dependent on state variable

» Algorithmic approach
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PDE-CONSTRAINED OPTIMIZATION FOR
DESIGN




Frequency Domain Elastodynamics

Governing Elastodynamic Equations
in Frequency Domain

—V.o+7—-b=01in

u=gonlp

o-n=71only

c=C:e
1
€lu] = i(Vu + Vaul)

~ = —pwu

Relevant Function Spaces

Variational Weak-Form U:={u:uecH (Q),u=gonTp}

Find v € U s.t.: M:={y:ve H(Q),y=gmon T, Q}
S={c:0€Hy4,,V-o+b=~vinQo-n=1only}
W:={w:wecH (Q),w=0o0nTp}

(u, w)c — w?(pu, w) = f(w) Yw € W
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How can we evaluate dynamic behavior?

— Structural objective, D(w) , dependent on the state (displacements) and quantifies structural
performance

— Frequency response matching: least-squares misfit between calculated and targeted displacements

D(w) : = [lu— w2, 0, = / u — '

= (u—u',u —ud)q

m

— Vibration isolation: minimized vibrational amplitude in subdomain, target displacements set to zero
— Multiple frequency cases represented as sum of individual frequency responses

— Static stability enforced through additional load case or inequality constraint
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How are designs represented?

We utilize typical topology optimization strategies for density-based design parameterization
— Density design variable: pseudo-density field

—  “Analysis density”, ¢(f), produced through series of filtering and Heaviside-projection
operations

— Solid Isotropic Microstructure with Penalization (SIMP): Interpolation between material
phases using ¢ (), penalizing intermediate densities (Bendsge 1989)

9(8) =1
C(B) :=Co + AC ¢(B)?
p(B) = Co + Ap $(B)P
b = 37 Pm = i
AC = (C; — Cy), Ap = (p1 — po)
¢(B) =0
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Filtering & Projection Operations

Density-based design requires additional operations upon design variable to have well-posed problem
while obtaining black-white design.

R G

FILTER

X0 — 200

Helmholtz PDE Filter (Lazarov 2011):

- Ensure well-posedness, eliminate checkerboarding, C2AR LA @
mesh-dependency rfAf+ 8 =p5inQ
- Filtered design is solution to “Helmholtz” PDE V6-n=0onT

- Requires two linear solves per iteration, but utilizes

original FE mesh
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Filtering & Projection Operations

Density-based design requires additional operations upon design variable to have well-posed problem
while obtaining black-white design

f s § o ) = C(5(5)), p(6(B))

FILTER HEAVISIDE MATERIAL
PROJECTION MODEL

X0 — 20 — E

Heaviside Projection:
) + tanh(C(8 — 1)) - Encourage black/white design

o
©

~ tanh(

¢n
$(8) = tanh(¢n) + tanh({(1 —n)) - Project filtered field onto smooth-
approximation of Heaviside function
(Guest 2011)

o
o

Analysis Density ¢

o o
o N £
\
|
o~
(]
@ H =

o

0.5 1
Filtered Density 3
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PDE-Constrained Design Problem

Define the conventional Least-Squares design problem:

.
i (u; B)

subject to: Governing PDE + boundary conditions

Design Variable Constraints (volume, etc)

—
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Motivation for new design approach...

Specific challenges in FRF design methods:
— L2 objective functions possess singularities, creating local minima
— Solvers face challenges for large, ill-conditioned elastodynamic systems

— Achieving both static stiffness & dynamic behavior can be challenging

Issues faced by design methods for dynamic response are similar to issues in material inversion
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Motivation for new design approach...

In design, we want to match computed behavior to desired response
Modified Error in Constitutive Equations (MECE):

*  Main Idea: Relax enforcement of constitutive equations, use

Shear_Modulus

objective term to enforce relationships " 128 5

— Previous applications in material ID for elasticity, ultrasound
elastography, viscoelasticity, acoustic structural interaction

¢  Extend MECE strategy to topology optimization of structures for
frequency-domain response

X L2 with L-BFGS: 500 X MECE: 100 iterations
iterations

Banerjee et al. (2013)
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MECE Objective

Formulation to permit violation of both constitutive equations and dynamical equation
— Both constitutive parameters & mass density are unknowns
Objective Function Components:
— Sum of ECE, EDE terms, weighted by scalar @ € (0,1) (default, select @ = 0.5)

— Objective function of state variable, weighted by k:

Error in Constitutive E(u,o,p) := / (o0 — C(B) : €|u]) : (C(ﬂ)_1 (o —C(P) : €lu])dQ
Equations (ECE) Q

Error in Dynamical T(u ::/ L N 20,2400
Equation (EDE) (uw,7,5) 0 p(B)w? [y + p(B)wul

-«
2

I(u,7, 8) + ~D(u)

(87
A(’U,,O',’Y,B;l‘i) = Eg(u”o-’ﬁ) + 2

State objective, weighted by
parameter K
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MECE Design Problem

* Define the minimization problem:

(MECE) u*, 0™, ~", 5" = arg min A(u,o,7,8;k) MECE objective function
ueld,c€S8,yeM,BEB

subject to:

1
— / (b(ﬁ)dQ — ] s.t. optional volume constraints
VQ Q

*  Constitutive equations not explicitly enforced as equality constraints, enforced through objective
minimization
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Motivation for MECE in Design

MECE has key mathematical properties for optimization considering frequency-

E domain dynamics

We first can demonstrate qualitatively that MECE features “smoother”, more-
convex objective:

Generate 2D design space, characterized by two perturbations of design variable for a
cantilever beam

Perturbation 2

o
>

Perturbation 1 E
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Motivation for MECE in Design

With low k parameter magnitudes, the MECE objective resembles L2 counterpart:

Least-Squares Objective

Step along Perturbation 2

—,

-

DukeUNIVERSITV

Step along Perturbation 1
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MECE Objective, k = 1e — 5

Step along Perturbation 2

Step along Perturbation 1
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Motivation for MECE in Design

With larger k parameters, the objective becomes smoother and more convex:

Least-Squares Objective

Step along Perturbation 2

—,

-

Step along Perturbation 1

MECE Objective, k = 1e — 1

o

=

\ =
y — —

Step along Perturbation 2

—= T T T g —

Step along Perturbation 1
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Motivation for MECE in Design

MECE thus exhibits reduced risk of convergence to poor local minima, though can introduce intolerable error for large k.

Least-Squares Objective MECE Objective, k = 1e + 3

Step along Perturbation 2
Step along Perturbation 2

" - I -

Step along Perturbation 1 Step along Perturbation 1
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Optimality Conditions

First order optimality conditions require the solution of a pair of coupled variational problems, fundamental to MECE

Define Lagrangian: L(w, 0,7, f,w) := A(u, 0,7, 5) — R((o, €|w]) + (v, w) — F(w))
where w € W = {w:w e H'(Q),w=0onTp}

First-order necessary Karush-Kahn-Tucker (KKT) optimality conditions require:

L,[6] = LL]A] = £,]a] = £, [b] = L[] =0

d
where: L [6] := %E(u,a +to,7, 8, w)|i=o
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Optimality Conditions

Evaluating derivatives with respect to stresses and inertial forces:

LL6]=0V6 €S, LI[F] =0y eM
yields identities:

oc=C:e€eu+ —w|
o

e (e )
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Optimality Conditions

Setting L) [a] =0 Ya e U, L, [w] =0 Vw € W and substituting the expressions for stresses and inertial
forces yields a coupled system of variational equations:

a(w,w) —rd(u,u) = —rd(ul,a), YaeW
am(w,w) Ha(u,w) = f(w), Vw e W

where:

(W, V) = E<U’U>C - A=) (pv,v)

Finally, setting ﬁ’ﬂ [B] =0,VBe B vyields:

(8 = ~(0,C7 2507 s 0) + (ul € eful) = o (Gnr) +2ousw)
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Reduced Optimization Problem

We use a reduced-space formulation to solve the optimization problem:

llgleig A(B) == Aug, o(ug, wg), ¥(ug, wg), B; K)

Reduced Objective: Substitution of stress, mass inertia expressions yield ECE functionals dependent only on wg

A(B) = 5wy B) + g T(w5. ) + §D(up)
5(5) = <w,6’7w6><0(,3)

Z(B) == w?(p(B)wg, wp)
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Discretization

*  Introduce a Galerkin approximation of the displacements and Lagrange multipliers:
u" = [N|{u}, w" = [N}{w}

@ = [N){a}, w" = [N|{w}

*  Element-wise design variable. {5} and analysis density {&(8)}

. Substitution of Galerkin approx. and discretization yields 2N x 2N coupled system :

L
(4] = (K]~ (M), [An] i= = [K] +

{R} = [Q{u'}

w2

(1-a)

[M]
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Reduced Objective & Gradient Discretization

Discrete reduced objective:

w2

AAY) =g (0" K"} + 55—

{w"} M} + Z{u" — '} QN u" — u')
Reduced gradient: element-wise calculation

A ({}) = — {w" Yo [K{w"}e — %{wh}f[f{é]{wh}e

A U AT A e s U ALTAI TR S

Heaviside projection gradient: element-wise calculation

Adjoint PDE-filter linear solve: A’ ({8}) := [T]T[Hf]_l[T]{qb’g}([\;({(b})




Key Mathematical Properties of MECE

The coupled system is well-posed, even at resonant frequencies:

— We assume that that modes excited in structure are “measured” by structural objective.

MECE objective has improved convexity:

- For linear-elastic material inversion, MECE objective is globally convex as k — +00, with a strictly positive-
definite Hessian

- MECE Hessian using SIMP can be sign-indefinite due to high-order material model derivatives & non-
convex Heaviside operations
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Key Asymptotic Properties of MECE

Analysis of the MECE problem in asymptotic cases k = +00, k — 0 illuminates key properties:
— large-k:
¢ Displacements are enforced to match target behavior: u = u' on Qy,

* The objective is dominated by ECE terms:  A(8) = —€(wyg, B) +

I(’wg,ﬁ)

L+

b
(1-a)

—  Small-k:

* The objective is dominated by the original least-squares structural objective:
~ 1
w— 0, A(B) = 5/12)(’11,5) + o(k)

* Displacements u solve original elastodynamic forward problem:

a(u, @) = f(@) Ya e W
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EXAMPLES

e PARAMETER SELECTION
. VIBRATION ISOLATION

. FREQUENCY RESPONSE MATCHING




K Parameter Selection

Penalty parameter k controls level of constitutive equation violation
— In material ID, selected based upon level of measurement noise (e.g. using Morozov Principle)
Proposed Approach: Error-Balance

— Select optimal parameter which balances error, state-objective terms, measured by error-balance
objective:

B(r, B3) = [a€(r, B3) + (1 — @)Z(x, B5)]" + (D(x, 57))°

— Solve series of optimization problems for optimal k¥ minimizing error-balance objective

D(u})

K

E(Br, uy)

* Approximate minimizer occurs when k =

Dukeumvensnv % 29|47




FRF Match: Design Reconstruction
Goal

Demonstrate ability of MECE to design a structure which can match a
target FRF

Problem Objective:

Match exterior measurements of the target “frame” structure with the
designed structure’s displacements under static and multiple dynamic
loading conditions.
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FRF Match: Design Reconstruction
Goal
I'p Q

Demonstrate ability of MECE to design a structure which can match a
target FRF

Problem Objective:
Match static and dynamic exterior measurements of the target “frame”
structure with the designed structure’s displacements at multiple

frequencies

LEAST_ Iteration 0 MECE Iteration 0

SQUARES DESIGNED

Sandia =
Duke...vco..r, DS RS 31|47

DESIGNED STRUCTURE
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FRF Match: Design Reconstruction

MECE

S AR B 4216¢-01 1147603
ismatch

Relative Design Accuracy 36% 83%
Gray Fraction 29.9% 9.8%

MECE
DESIGNED
STRUCTURE

LEAST-
SQUARES
DESIGNED
STRUCTURE
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FRF Match: Design Reconstruction

10" |
i »  Comparisons for
FRF's of MECE and
L2 designs vs. FRF of

target structure

* Dashed lines indicate
target excitation
frequencies

norm

--—-Target
|- — Target Freqgs
[

| | | | | | |
0 2 4 6 8 10 12 14 16 18

Excitation Frequency (Hz)
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FRF Match Design

2L

Problem Objective:

*  Design a structure that matches a target FRF

¢ Match dynamic measurements of a target structure made of
lighter, less-stiff material

—  Shear Modulus: G; = 5G,
—  Bulk Modulus: b; = 3b,
—  Mass Density: p1= 4pg

e Use poor, random initial guess

I'p
Random
Initial Guess :




FRF Match Design

2L

LMST Iteration 10
SQUARES
Design

Problem Objective:
*  Design a structure that matches a target FRF

¢ Match dynamic measurements of a target structure made of
lighter, less-stiff material

e Use poor, random initial guess

Iteration 10

MECE

Design

35 | 47
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FRF Match Design

LEAST
SQUARES

Design

Frequency

Static Disp Norm 0 1.785e+00 Static Disp Norm 0 3.571e+00
Mean Relative Mean Relative

Displacement Misfit YR Sllex0 Displacement Misfit ol 17 Lt
Gray Fraction - 29.9% Gray Fraction - 15.6%

DukEUvaensnv Eﬂi:iom 36|47




FRF Match Design

Frequency response shows near match at target frequencies Displacements (blue) vs targets (red)
8 0.0 Hz 4.0 Hz
10°% ¢
10“2 v
- > ' >
o
10° -0. -
0 0.5 1 1.5 2
% 7.0 Hz
102
I
. |——MECE [ ] > >
0 —12 [
—Target
— — Target Fregs
10-6 T T | | | | | | |
0 2 4 6 8 10 12 14 16 18 20 0 0.5 1 1.5 2
X

ExcitationFrequency (Hz)
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Multifrequency Vibration Isolation Design

Goal: Design stable structures with minimized vibration in target frequency ranges

Problem Objective: Minimize static and dynamic displacements at free end of cantilever beam at low and/or high frequency ranges

Cantilever beam design domain

“ 2L




Multifrequency Vibration Isolation Design

. Goal: Design stable structures with minimized vibration in target frequency ranges

. Problem Objective: Minimize static and dynamic displacements at free end of cantilever beam at low and/or high frequency ranges

Case 1 : Low frequencies (5.7-5.8 Hz) Case 2 : High frequencies (11.4-11.6 Hz) Case 3 : Low & High frequencies

Iteration 0 Iteration O Iteration 0

>0 <

Sandia
u e National
UNIVERSITY Laboratories



Multifrequency Vibration Isolation Design

Case 1 : Low frequencies (5.7-5.8 Hz) Case 2 : High frequencies (10-10.1 Hz) Case 3 : Low & High frequencies

Freq | Mean Squared
(Hz)

Static 0 6.052e+03 Static 0 471903 Static 0 5.979e+03
Low 8.461e+01 Low 2486e+05 Low 7.311e+01
Dynamic Dynamic Dynamic
High 4.429e+03 High 5.377e+00 High 5271e+01
Gray Fraction - 8.4% Gray Fraction - 2.8 % Gray Fraction - 20.1%

DukEUvaensnv Eﬂi:&m 40|47




Multifrequency Vibration Isolation: Displacements

Case 1 : Low frequencies Case 2 : High frequencies Case 3 : Low & High frequencies

0.0 Hz 0.0 Hz 0.0 Hz

0.5 0.5 0.5
> O > 0 > 0
05 B 05
0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2
X X ’
5.8 Hz 5.8 Hz 5.8 Hz
0.5 0.5
0.5
> > 0 > 0
0
05 05
o ] ’ 0 1 5 "0 05 1 15 2
X X X
11.6 Hz 11.6 Hz
11.6 Hz 0.5 0.5
0.5
e - - @
-05 -0.5 -0.5
5 OF & LE 0 0.5 1 15 2 0 0.5 1 1.5 2
X X X
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Multifrequency Vibration Isolation: Frequency Response

MECE designs achieve vibration isolation at target frequencies through complicated modal behavior

1010 E
10°% ¢

108

10 ]
E g
»
102
£ | | %
10° £{—Case 1 ) l\/i | .
- |— Target [ !
(|—Case2 ll‘ Iy
10.2;—Case3 ‘I‘ Ly } ]
| — —Target Freq. i ! | ]
| 1 L | | 1
0 2 4 6 8 10 12

Excitation Frequency (Hz)
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Future Directions

Develop preconditioner for coupled system, for use in parallel iterative solver.

Construct Reduced Order Modeling strategies for state and design spaces to accelerate optimization
solution

Demonstrate MECE in large-scale design problems
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Preconditioner Development

e Coupled stationarity system poses computational bottleneck and conditioning challenges:

— 2N x 2N dimension, poor conditioning due to material contrast & ill-conditioned blocks

*  Construct preconditioner for coupled stationarity system for use in parallelized, iterative solver

— Shifted Laplacian: use block diagonal matrix, with complex-shifted Laplacian blocks
_| Gl o s —1| [A] —w[Q | _p 1] {R}
e R R ol U RO B

where: [G] := [K] + (a1 + i61)[M]
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Design Dimensionality Reduction

*  FEarly-stage work investigating reduced-basis approximations of density field
. Solve series of TO problems, adapting basis each pass to better represent solution
e Benefits:

— Reduces dimensionality of design problem

— Removes constraints

— Does not require filter

— Converges quickly to 0-1 designs

I IR RN T
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Conclusions

MECE strategy improves upon conventional approaches to structural FRF design.

— MECE can superiorly handle multiple frequency cases, poor initial guesses.

— Demonstrated successful designs using MECE to match target behavior, minimize FRF.
MECE suggests significant potential in new design applications.
To leverage MECE effectively, we must address its computational efficiency.

Relaxation of constitutive equations may prove useful in stress-constrained TO
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*  Implementation:

Prototyping code implemented in MATLAB, using fmincon interior-point method

Large scale problems solved with Sierra-SD, coupled with Rapid Optimization Library (ROL)

- Object oriented, massively-parallelized software for structural dynamics problems

Optimization performed using constrained-optimization methods from ROL

- Operator framework to interface with gradient-based optimization methods

DukeUNIVERSITV




Reduced Optimization Problem

We use a reduced-space formulation to solve the optimization problem:

¥ Given well-posedness of coupled system (Aquino 2018), there exist unigue solutions {ug, wg} for given design variable value.
Solution of CS represents partial minimization w.rt. independent variables {u, o, y}:

Ug, 08,78 = arg min A(’U,,O',’j/,ﬁ)
ueld,ccS,veM
¥ We may formulate reduced problem:
glelzrsl A(B) = A(’U,/g, U(“’ﬁ? wﬁ)? 7(“’,37 w5)7 67 K’)
. Reduced Objective: Substitution of stress, mass inertia expressions yield ECE functionals dependent only on wg
A(B) = 58w, §) + 5——T(ws,B) + SD(us)
= —¢&(wg, —T(wag, —D(u
20"\ P 21 —a) " g e

E(B) = (wg, wp)c(s)
Z(B) == w?(p(B)wg, wp)
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Key Mathematical Properties of MECE

The coupled system is well-posed, even at resonant frequencies:
— We assume that that modes excited in structure are “measured” by structural objective.

— Helmholtz operator 4 may have null space, but elements of N(A) must yield non-zero value for
structural objective operator D:

N(A)NN(D) =10
MECE objective has “improved” convexity:

- For linear-elastic material inversion, MECE objective is globally convex as k — 400, with a strictly positive-
definite Hessian

- MECE Hessian using SIMP model can be sign-indefinite due to high-order material model derivatives &
non-convex Heaviside operations
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Error Balance Example

K Parameter Selection

MECE
Penalty parameter k controls level of constitutive equation violation
MECE
— In material ID, selected based upon level of measurement noise, using D K=1le+1
Morozov Principle, for example
Approach1: Error-Balance D MECE
k=1le—-1
— Select optimal parameter which balances error, state-objective terms,
measured by error-balance objective: —
* * *\12 * =1le—3
B(x, ) = [a€(k, B%) + (1 — )Z(x, B)]" + (D(k, B7))* —
— Solve for optimal Kk minimizing error-balance oZt;JecINe e
* Approximate minimizer occurs when g = M K=dess
E(Bx uf)
“Optimal”
kK=2e+0
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K Parameter Selection

Approach 2: Structural response minimization

*  Determine Kope Which yields "optimal™ minimizer ﬂ,’;opt that:
— Obtains minimized structural response
— Possesses adequately low gray fraction

*  Solve 1D minimization problem to determine K,y

— Solve original forward problem, using system constructed with By
— Evaluate original structural objective

— Use golden sections/bisection/etc method to determine the minimizer k,,; over range of k values,
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K Parameter Selection
Example

Cantilever beam design domain

2L

Oy
Q L I¢ T L%Z
l I'n

I'p

4F %
35"
E 5
s %
Co25¢
[
[}
E 2 s
Q
[$]
8
815
(=)
s
£ 17
[$)
g L4 o
w

L]
t o B ‘
R 10°

MECE Parameter «
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lter MECE Kk

DESIGN

Gray
Fraction

Objective
Decrease

1 Kk = 3.3718e — 02 D 4.0259%¢-01 4.265e+00
2 K = 2.9658e — 01 D 1.9325e-01 7.973e-01
3 k=1.137e + 00 D 2.14%9e-01 2.045e+00
4 k=1.293e—01 D 2.128e-01 6.700e-01
5 Kk =7.736e — 02 D 1.845e-01 5.749e-01
6 K = 6.854e — 02 D 4.917e-01 3.857e+00
7 Kk=7.387e-02 D 3349¢-01 8.148¢-01
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