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Outline )

e Peridynamics: What it s

e What it was originally intended to do
* Fracture

e What people have discovered it can do
* Lots of other stuff




Laboratories

How does a crack nucleate and grow?  ([@E=

How does a continuous deformation become discontinuous?

* To study this, we need a model that seamlessly transitions from one to the other within a
consistent mathematical system.
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Crack process zone idealization**

Peridynamic simulation

Metallic glass crack tip*

*Hofmann et al, Nature (2008)
**Abhimanew, https://commons.wikimedia.org/wiki/File:Fracture_Process_Zone.gif




Peridynamic answers to some simple
guestions
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 Why is fracture different from other kinds of deformation?
e [tisn’t.
 Why are special modeling techniques needed for fracture?
 They aren’t.
*  Why does nearly everybody think they are?
* Because nearly everybody uses partial differential equations (PDEs).
* What might work better?
* Integral equations.

Typical damage progression in a notched composite panel
(photo courtesy Boeing)



Peridynamic* momentum balance

* Peri (near) + dyne (force)

e Any point x interacts directly with other points within a distance d called the “horizon.”

e The material within a distance ¢ of x is called the “family” of x, H.

Peridynamic equilibrium equation
/ f(q,x) dVq +b(x) =0
Hx

f = bond force density (from the material
model, which includes damage)

Hy= family of x

« If f satisfies f(x,q) = —f(q,x) for all X, q then linear momentum is conserved.

« SS, JMPS (2000)
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What’s been learned about...
Simple particle discretization

= Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.
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Py (x,1) = / f(x',x,t) dVy + b(x,1) — Yy = Z f(xk,xi,1) AV), + b}
H keH

=  Good:

= Simple.

= Linear and angular momentum conserved exactly.

= Why: the discretized system is itself a peridynamic body.

= Bad:

= Dust!

= |f Ax/§ is held constant, fails to converge to PDEsas § — 0.

= Fails patch test for irregular grids.

* Discontinuous Galerkin is another viable method (used in LS-DYNA).

» SS & Askari, Computers and Structures (2005)

* Bobaru, Yang, Alves, SS, Askari, & Xu, IJNME (2009)

* Chen & Gunzburger, CMAME (2011)

* Du, Tian, & Zhao, SIAM J Numerical Analysis (2013)

* Tian & Du, SIAM J Numerical Analysis. (2014)

* Ganzenmdiiller, Hiermaier, May, in Meshfree methods for partial differential equations VII, Springer (2015)
* Seleson & Littlewood, Computers & Mathematics with Applications (2016)

* Du, in Handbook of peridynamic modeling (2016)



Simplest material model: Microelastic ) s,

e Each bond acts like a linear spring.
f = C®(ux+¥ - ux)M
* u=displacement
M= deformed bond direction
e &= bond vector
* f=bond force
* C(&) = micromodulus (spring
constant)
*  Micromodulus and horizon determine
the wave speeds.

TR

- SS, JMPS (2000)
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Bond 4
force f

e

»

Bond extension =

(ulx + &) —u(x))

Buckling of a constrained microelastic rod

We get geometrical nonlinearity for free!
(Simulation includes contact forces.)




Simplest material model for fracture: )
Brittle microelastic
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 Damage can be modeled by bond breakage.
* Breakage strain determines the energy release rate G,.

Bond breakage

f‘
/ Hertzian cone crack in glass*

»

Bond extension

A_| _ Slope = micromodulus

. . k%
*SS & Askari, Computers and Structures (2005) Sand particle impact erodes a glass target

**Waxman & Guven, Wear (2019)




Most commonly used capability: )i
Autonomous crack growth

* Cracks do what they want (grow, arrest, branch, curve, oscillate, ...)

cececccccscscssscsscssssccsssssss —  Broken bond

Crack path

» SS & Askari, Computers and Structures (2005)



Crack stability and mode transition LL

e Biaxial loading makes a crack turn.
* Center defect can grow in an S-shape.
* Biaxiality: B = g, /0y,.

Observed crack paths in PMMA*

*Leevers, Radon, & Culver JMPS (1976)
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Simulated crack paths




Early 2000’s: Airplane crashes and
reinforced concrete

mh
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* Meshless discretization, simple contact algorithm, and geometrical nonlinearity are all important.

Emu simulation of F4 aircraft vs. concrete block*

Model of rebar splice failure (courtesy W. Gerstle)

INTRODUCTION TO
PRACTICAL PERIDYNAMICS

Computational Solid Mechanics Without Stress and Strain

Walter Herbert Gerstle

o Sugano et al, Nuclear Engineering and Design (1993)
" Gerstle, Sau, & SS, Nuclear Engineering and Design (2007)
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What’s been learned about...

Damage laws beyond brittle microelastic @

* The theory does not restrict what causes bonds to break. Examples:

Dynamic fracture

Stable damage

; growth ’

Bond extension

€22= 0.050

. . . Peridynamic crack nucleation using nonlocal damage mechanics**
Adding a tail to the simple bond y § 8

breakage material decouples G,
from the peak stress*

e—— = T

Damage criterion that depends on shear*** can be calibrated to Gy,

*SS, in Handbook of Peridynamic Modeling (2016)
**SS, in Handbook of Nonlocal Continuum Mechanics (2019)
***E. Oterkus, thesis, Univ of Arizona (2010)
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2010: Peridynamics reproduces
measured dynamic crack velocity

Sandia
m National

Laboratories

* Fracture in soda-lime glass using 3 different grid spacings*.

004
002 ﬂ—/z
% 0.05 041
(a)
2500 : —
x
-§- e Experimental maximum fracture speed
z (1580 m/s) (Bowden 1967) 4
] § - ey - By
& 1500 Vo e
& .
L 10 f
’
g. ;/ ——-&—— Crack speed byptridyrlnmlcs (horizon= 2 mm)
| '
T sw J === = Crack speed by peridynamics (horizon= 1 mm)
g
P ——— Crack speed by peridynamics (horizen= 0.5 mm)
0 v i I i 1 i
0 1E-05 2E-05 JE-05 4E-05
*  Ha & Bobaru, IntJ Fracture (2010) Time (second)

*  *Agwai, Guven, & Madenci, Int J Fracture (2011)

*  Ha & Bobaru, Engin Fracture Mech (2011)

. Dipasquale, Zaccariotto, & Galvanetto, Int J Fracture (2014)
*  Bobaru & Zhang, Int. J Fracture (2015)

*  Zhou, Wang, & Qian, European J Mechanics-A/Solids. (2016)




Fracture animation i) o

* Peridynamics is a viable method for making movies.

Chen, Zhu, Zhao, Li, & Wang, Computer Graphics Forum (2018)

Welsh dragon

Levine, Bargteil, Corsi, Tessendorf, & Geist, ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2014)




Accumulation of damage: () &=,
Hammering on a block

1 strike 5 strikes 24 strikes

Colors show damage




Fragmentation due to impact ) .

Brittle cylinder vs. rigid plate at 1km/s.

Colors show damage




Fracture driven by thermal stress ) i
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* A microelastic material model is easily modified to include thermal strain in bonds.
« A thermodynamically consistent state-based approach to thermoelasticity is available**.

f T Cold

Hot

Bond strain

» *Kilic & Madenci, Int J Fracture (2009)

e **S Oterkus, Madenci, & Agwai, JMPS (2014)

e ***)eon, Stewart, & Ahmed, Proc Royal Society A (2015)
* Xu, Zhang, Chen, & Bobaru, Int J Fracture (2018)

3.6ps

18.1 ps 36.1 ps 723 ps
Rupert test for thermal stress in glass**

Crack branching driven by a temperature
gradient*




What’s been learned about...
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Crack nucleation

Crack nucleation happens due a material instability.

Happens when a perturbation of any point fails to induce a force in the opposite direction.

Does not in general coincide with peak in a stress-strain curve.
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Dynamic crack

Crack nucleation near a hole in a stretchd brittle-microelastic plate.

Unstable material surrounds a crack tip.

Lipton, Lehoucq, & Jha, J Peridynamics & Nonlocal Modeling (2016)

SS, Weckner, Askari, & Bobaru, Int J Fracture (2010)




2009: Anisotropy and composites ) =,

* Apply different bond stiffness and breakage criteria in different directions.

1 1
a b I
Bond force
Fiber
~3 <3
2 2 Matrix
Egnd stretch

m Second degree Fiber and matrix bonds
M Eighth degree

Bond stiffness as a function of direction using
spherical harmonics*

*  Kilic, Agwai, & Madenci, Composite Structures (2009)

*  E. Oterkus, thesis, Univ of Arizona (2010)

*  Hu, Ha, & Bobaru, IntJ Multiscale Comp Engin (2011)

*  Hu, Ha, & Bobaru , CMAME (2012)

*  *@Ghajari, lannucci, & Curtis, CMAME (2014)

*  Yu & Wang, Composite Structures (2014)

* S. Oterkus & Madenci, AIAA SciTech Forum (2014)

*  Hu, De Carvalho, & Madenci, Composite Structures (2015)
*  Su & Huang, Composite Structures (2016)

»  Bobaru, Mehrmashhadi, Chen, & Niazi, US-Japan Conference on EMU simulations of failure modes in a notched
Composite Materials (2018) composite panel under tension for different layups

*  Baber, Ranatunga, & Guven, J Composite Materials (2018)
*  Trageser & Seleson, arXiv:1905.12761 (2019)
*  Mikata, /1JSS (2019)




Many validation studies have been done

h
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* First issue of the new Journal of Peridynamics and Nonlocal Modeling has a review article by Diehl

on published validation to date:

Journal of Peri and Nonlocal
https://doi.org/10.1007/542102-018-0004-x

REVIEWS

A Review of Benchmark Experiments for the Validation
of Peridynamics Models

Patrick Diehl' @ . Serge Prudhomme? - Martin Lévesque’

Received: 2 November 2018 / Accepted: 25 December 2018
© Springer Nature Switzerland AG 2019

Journal of Peridynamics
AND

Nonlocal Modeling

/
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Table 3 Applications of bond-based and state-based peridynamics for the comparison with experimental data

Material Mechanical test B S Exp Sim
Composite Flexural test with an intial crack v [75] [2]
Composite Damage growth prediction (six-bolt specimen) v [120] 196]
Composite Damage prediction (center-cracked laminates) v [6, 12, 69, 134] [70]
Composite Dynamic tension test (prenoteched rectangular plate) v 112, 65] 58]

Steel Crack growth (Kalthoff-Winkler) v v [66-68] [3, 52, 114, 144]
Aluminum/Steel Fracture (compact tension test) v 19, 77, 89, 91] [135, 141, 142]
Aluminum Taylor impact test v [4,21] [3, 43, 45]
Aluminum (6061-T6) Ballistic impact test v 1132] [127]
Concrete Lap-splice experiment v [48] [48]
Concrete 3-point bending beam v v 119, 63| [7:51)
Concrete Failure in a Barazilian disk under compression v [51] [54]
Concrete Anchor Bolt Pullout v [128] [83]

Glass Dynamic crack propagation (prenotched thin rectangular plate) v [15, 36, 100] [2, 53, 144]
Glass Impact damage with a thin polycarbonate backing v 18, 20, 40| 159]

Glass Single crack paths (quenched glass plate) v [13, 103, 136] [71]

Glass Multiple crack paths (quenched glass plate) v [102, 137] [71]

Glass Crack tip propagation speed v [15] [52, 53, 144]
PMMA Fast cracks in PMMA v 139] 12]

PMMA Tensile test v [124] [32]
Soda-lime glass Impact on a two-plate system v |16, 130] [130]

Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to experimental data, and Sim to simulation
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2007: State-based material modeling )

Laboratories

* Bond-based: each bond responds independently of the others.
« State-based: the deformation of the entire family collectively determines the bond forces.

« State-based momentum balance: py(x,t) = J {I[X](q —x) — T[q](x — q)}qu + b(x)
o\ |

|
f(q,x)

* Example: compressible fluid

T(E) = ko)

|Y(E)|

Y = dilatation of family
= (deformed volume)/(initial volume)-1

Hydraulic ram
VIDEO

* SS, Epton, Weckner, Xu, & Askari, J Elasticity (2007)
* Madenci & E. Oterkus, Peridynamic Theory & Its Applications, Springer (2014)

22



2014: State-based plates & shells ) e,

Laboratories

* A state-based model can resist the relative rotation of bonds in a family, i.e., bending.
* No need to create new field equations for beams, plates, & shells.

—T(-%) —T(®)

T(E) + T(—¥)

Fig. 7 Orhotropic plates with central crack under pure bending moment
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Bending and failure of orthotropic plates*

O’Grady & Foster, IntJ Solids & Structures (2014)

* Diyaroglu, E. Oterkus, S. Oterkus, & Madenci, Int J Solids & Structures (2015)
Chowdhury, P. Roy, D. Roy, Reddy, Int J Solids & Structures (2016)

* *Tastan, Yolum, Giiler, Zaccariotto, & Galvanetto, Procedia Structural Integrity (2016)




What’s been learned about...

Correspondence materials

* Thisis a type of state-based material model that uses a stress tensor as an intermediate
guantity in computing bond forces.
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Y(&) - F - 0 - T(%)

* Good:
e Can use any material model from a finite
element code.
* Bad:
* Loose a lot of information about bonds.
e Stability issues especially zero-energy modes.
* Some overlap with SPH except for damage. Without stabilization With stabilization

G=0 G=1.0

* SS, Epton, Weckner, Xu, & Askari, J Elasticity (2007) Correspondence material zero-energy
* Warren, SS, Askari, Weckner, Epton, Xu, Int J Solids & Structures (2009) mode instability and stabilization*
* Tupek & Radovitzky, JMPS (2014)

* Bessa, Foster, Belytschko, & Liu, Computational Mechanics (2014)

« *SS, CMAME (2017)

* Du & Tian, SIAM J Applied Math (2018)

* Foster & Xu, Int J Solids & Structures (2018)

* Li, Hao, & Zhen, CMAME (2018)

* Nicely, Tang, & Qian, CMAME (2018)

* Chowdhury, P. Roy, D. Roy, & Reddy, CMAME (2019)

* Ganzenmdiiller, Hiermaier, May, Computers & Structures (2015)



What’s been learned about...

Ductile materials and failure

f Loading
S —_—

a4

Unloading

n
>

Bond strain

Microplastic: same as microelastic but with
permanent bond deformation

e Canuse J, plasticity with correspondence material models.
e  Crystal plasticity has been implemented™**.
* Ordinary state based plasticity model appears possible***,

* Macek & SS, Finite Elements in Analysis and Design (2007)

* Foster, SS, & Chen, /NME (2010)

* Foster, SS, & Chen, IntJ Multiscale Computational Engineering (2011)

* ***Mitchell, Sandia tech report SAND2011-4974C (2011)

* *Wellman, Sandia tech report SAND2012-1343 (2012)

* **Sun & Sundararaghavan, Int J Solids Structures (2014)

* Amani, E. Oterkus, Areias, Zi, Nguyen-Thoi, & Rabczuk, IntJImpact Engineering (2016)
* Rahaman, P. Roy, D. Roy, & Reddy, CMAME (2017)

Force
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Johnson-Cook plasticity with
Wellman tearing model*

Convergence

Total z—force through plane
T T T

80

0 0.1 0.2
Nominal strain




What’s been learned about... -
Atomistics & peridynamics h) o,

* Intuitively, the nonlocal nature of PD should make it more compatible with molecular dynamics than
the PDE theory is.
* A set of atoms can be represented as a PD body:
* Eachis a delta function in space.
* Any interatomic potential can be included as a state-based PD material model.
* PD continuum equations can be derived from statistical mechanics using Irving-Kirkwood approach*.

Molecular dynamics Peridynamics

1000

84 %00 0 ,
A & X X X

(a) MD: N, = 1001 (b) MD: N = 1001 (c) Fine PD: N, = 1001 (d) Coarse PD: N, = 501 (e) Coarse PD: N, = 251

Peridynamic model upscaled from the Embedded Atom Method**

» Seleson, Parks, Gunzburger & Lehoucq, Multiscale Modeling & Simulation. (2009)
» **Seleson, thesis, Florida State Univ (2010)

* *Lehoucq & Sears, Phys Rev E (2011)

* Rahman & Haque, Int J Computational Materials Science & Engineering. (2012)

* Seleson & Parks, in Handbook of Peridynamic Modeling (2016)

* Tong & Li, JMPS (2016)



What’s been learned about...

Relation to the Cauchy theory
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In the limit of zero horizon:
* If the material model is stable (monotonic for all bonds):

Peridynamic operator converges to Cauchy operator: ff - V-o.

Displacements approach solutions in the Cauchy theory.
Peridynamic stress tensor approaches Cauchy stress.
Waves become non-dispersive.

Boundary conditions converge to expected forms. _
Crack growth in a nonconvex

e Otherwise: (unstable) peridynamic material

e Emmrich & Weckner, Comm Math Sci (2007)

e SS & Lehoucq, J Elasticity (2008)

e Zhou & Du, SIAM J Numerical Analysis (2010)

* Du & Zhou, ESAIM (2011)

* Hinds & Radu, App! Math & Computation (2012)

* Erbay, Erkip, Muslu, J Differential Equations (2012)

* Du, Gunzburger, Lehoucq, & Zhou, J Elasticity (2013)

¢ Emmrich & Puhst, Comm Math Sci (2013)

* Mengesha & Du, Discrete Contin. Dynam. Systems B (2013)

Converges to a deformation with Griffith cracks (!).

Bond
force

* Bellido & Mora-Corral, SIAM J Math Analysis (2014)
e Lipton, J Elasticity (2014, 2015)

* Mangesha & Du, J Elasticity (2014)
* Mengesha & Du, Proc Royal Society Edinburgh A: Math (2014).

»
»

Bond strain

* Lipton, Lehoucq, & Jha, J Peridynamics & Nonlocal Modeling (2016)
* Du, in Handbook of Peridynamic Modeling, Taylor & Francis (2016)
e Coclite, Dipierro, Maddalena, & Valdinoci, Nonlinearity (2018)




What’s been learned about...

Usability issues ) i,

* Boundary conditions in peridynamics are different than with PDEs:
* Integral equations are more compatible with “volume constraints”.
* Surface effect:
* Materials take on altered properties near free surfaces and interfaces.
*  Dust:
* Inthe simple particle discretization, nodes tend to break off completely once
damage starts to occur.
* Many ideas have been proposed and demonstrated for mitigating these effects.
* But software tools need to make peridynamics look more like just an option that
works seamlessly.
* LS-DYNA has made a lot of progress.
* RKPM
* Peridiynamic Differential Operator

* Macek & SS, Finite Elements in Analysis & Design (2007)

* Kilic, thesis, Univ of Arizona (2008)

* Mitchell, SS, Littlewood, J Mechanics of Materials & Structures (2015)

* Le & Bobaru, Computational Mechanics (2018)

* Madenci, Barut, & Dorduncu, Peridynamic Differential Operator of Numerical Analysis, Springer (2019)
* Bessa, Foster, Belytschko, & Liu, Computational Mechanics (2014).

* Pasetto, Leng, Chen, Foster, & Seleson, CMAME.(2018).

* Hillman, Pasetto, & Zhou. "Generalized Reproducing Kernel Peridynamics...”, researchgate.net (2019).



What’s been learned about...

Dispersive waves and the horizon

* Linear waves are dispersive in peridynamics.
e Usefull (sometimes)
e All real materials are dispersive to some extent.

f=CE)ulx+8) —ulx)

a

Micromodulus C (&)

\Q

[

& \T
Horizon &

Many choices of C(¢) can lead to the
same bulk elastic modulus

Bond length ¢

* Weckner & SS, IntJ Multiscale Computational Engineering (2011)
* Butt, Timothy, & Meschke, Computational Mechanics (2017)

* *Qian, Jin, Wang, & Kishimoto, Int J Engineering Science (2004)

* Bobaru & Hu, IntJ Fracture (2012)

r=P/c,,

T T T T T e T T I T el eI T T T
0 1 2 3 4
kh, Wave Number

Real dispersion curves in a composite™*

4 Wave speed
i Wavenumber k
2m/6

The choice of C(é)can be matched to
dispersion data
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What’s been learned about...

National

Quasi-static problems ) ..

* Large number of bonds results in dense matrices.

* Great difficulty storing and manipulating these.

e Solvers that are effective with FEM generally are not so good with peridynamics.
* Matrix can become ill-conditioned or singular if there is damage.
* Dynamic relaxation is often the most effective method.

e But has known problems.

e Better iterative solvers would be a good thing.

Kilic & Madenci, Theoretical & Applied Fracture Mechanics (2010)
Breitenfeld, Geubelle, Weckner, & SS, CMAME (2014)
Zaccariotto, Luongo, & Galvanetto, Aeronautical Journal (2015)
Du, Gunzburger, Lehoucq, Zhou, SIAM Review (2012)

Katiyar, Foster, Ouchi, Sharma, J Computational Physics (2014)
Jabakhanji & Mohtar, Adv Water Resources (2015) Peridynamic simulation of corrosion pit growth*
Ouchi, Katiyar, York, Foster, & Sharma, Computational Mechanics (2015)

De Meo, Diyaroglu, Zhu, E. Oterkus, Siddiq. Int J Hydrogen Energy. (2016)

S. Oterkus, Madenci, & E. Oterkus, Engineering Geology (2017)

Chen & Bobaru, JMPS (2015)

Chen, Zhang, & Bobaru, J Electrochemical Society. (2016)

De Meo, Diyaroglu, Zhu, E. Oterkus, & Siddiq, Int J Hydrogen Energy (2016)

De Meo & E. Oterkus, Ocean Engineering. (2017)

Li, Chen, Tan, & Bobaru, Materials Science and Engineering: A. (2018)

*)afarzadeh, Chen, Zhao, & Bobaru, Corrosion Science (2019)




Where peridynamics is now )
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e Basic mechanical and mathematical principles have been worked out.
e Sky is the limit in dreaming up new materials.
* People are continually discovering new applications.
» Well-posedness and relation to other theories is understood.
« Simple meshless discretization is still the workhorse but has some issues (DG is good too).
* Possible fertile areas for growth:
e Atomistics: A2C coupling, coarse-graining.
* Fundamentals of fracture.
* Multiscale.
* Fluids and fluid-structure coupling. = == o
* Post-failure behavior of solids.
* Coupling of different physics.
*  FEM implementation.
* Implicit solvers.
* Material & structural stability*.
* Nonlocal waves*. )
* Models from pixels.
* Eulerian balance laws.
* Fast integration methods.
e Chemical reactions. it's in a lot of places!
* Geological media & flow. (numbers indicate relative number of downloads)

North
Atlantic
Ocean

Botswasy |
£ O Y

*Personal fave




What’s been learned about...
m I%g;lig?al
Nonlocal waves

* Linear waves are dispersive in peridynamics.

* Just by choosing the right nonlocal peridynamic material model, we can reproduce solitary waves.

* Local theory cannot do this without replacing the governing 2" order PDEs with 4t" order.
* E.g., KdV equation.

Pairwise bond
force density f

Slope ¢

0.001 Monlinear material:

Solitary waves \W

Linear material:
Dispersive wave

Bond strain 5

Displacement u(m)

Position x(m)
Nonlinear microelastic material model for a bond . . . .
Simulated dispersive waves and solitary waves.

Impact on left edge of a bar.

* SS, JMPS (2016)
* Pego & Van, J Elasticity (2018)



Extra slides )




2018: Ingeniously heterogeneous
materials

e Peridynamic differential operator (PDDO):

N
dP f(x) & .
S ' - 2 Pan
d'lfp = - f{‘r + E)ghr(i“ g) dg* Z a‘q w
Iix q:D
where the wy are weighting functions and there is a procedure for deter-
mining the a} at each point.

e Replace derivatives in an ODE or PDE with a discretized form of the
above, solve.

e Result is an accurate solution to the ODE or PDE using expressions that
look just like peridynamics.

e Cost of this accuracy: the corresponding peridynamic material model is
nonhomogeneous.

e Also there has been a lot of progress on RKPM for peridynamics.

Madenci, Barut, & Dorduncu, Peridynamic Differential Operator of Numerical Analysis, Springer (2019)
Bessa, Foster, Belytschko, & Liu, Computational Mechanics (2014).

Pasetto, Leng, Chen, Foster, & Seleson, CMAME.(2018).

Hillman, Pasetto, & Zhou. "Generalized Reproducing Kernel Peridynamics...”, researchgate.net (2019).
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2012: Nonlocal diffusion

e A possible nonlocal mass diffusion law:

X(x) = s D(q —x)(x(aq) — x(x)) dVq

where y is concentration and D is the microconductivity.

e [) can depend on bond breakage or other variables.

e Bond breakage parameters can depend on y.

* Du, Gunzburger, Lehoucq, Zhou, SIAM Review (2012)

* Katiyar, Foster, Ouchi, Sharma, J Computational Physics (2014)

* Chen & Bobaru, JMPS (2015)

* Jabakhanji & Mchtar, Adv Water Resources (2015)

e OQuchi, Katiyar, York, Foster, & Sharma, Computational Mechanics (2015)
* De Meo, Diyaroglu, Zhu, E. Oterkus, Siddiq. Int ] Hydrogen Energy. (2016)
e S. Oterkus, Madenci, & E. Oterkus, Engineering Geology (2017)

Fatigue with contaminant transport

Sandia
rl'! National
Laboratories

35



2010: State-based thermodynamics ) i,

e First law:
e=TeY +h+r

where e=internal energy density, h—=rate of heat transport, and r=source
rate.

e The integral in the first law only sums up the part of the bond forces due
to its own material model.

e Second law:
0n>h+r

where f=temperature and rj=entropy density.

e Typical nonlocal heat transport model:

h(x) = [ K (q - x)(0(a) - 0(x)) dV,

o x

where K is the microconductivity.

SS & Lehoucq, Advances in Applied Mechanics (2010)

Bobaru & Duangpanya, IntJ Heat & Mass Transfer (2010)

S. Oterkus, Madenci, & Agwai, J Computational Physics (2014)

E. Oterkus & Madenci, Peridynamic Theory & Its Applications, Springer (2014)
Chen & Bobaru, Computer Physics Comm (2015)



Tour de fracture...

Mirror-mist-hackle transition in glass @

\ Sandia
%) National
 Laboratories

* Model predicts roughness and microbranches that increase in size as the crack grows.
* Transition radius decreases as initial stress increases — trend agrees with experiments.

Fracture surface in a glass optical fiber*

3D peridynamic model

* Castilone, Glaesemann & Hanson, Proc. SPIE (2002)
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Tour de fracture...

Fracture of cold things h) i,

e Researchers are using peridynamics to model the behavior of floating ice.

Floating ice vs. rigid cylindrical structure**

- _
o z T z
113 e
\8s uws
1=s x N x
)53 e
45 043
"

Floating ice vs. propeller*

Floating ice vs. rigid slope***

*Ye, Wang, Chang, & Zhang, Ocean Engineering (2017)
**Vazic, E. Oterkus, & S. Oterkus, in Proc 7th International Conference on Marine Structures (2019)
***Lu, Wang, Jia, & Shi, in 28th International Ocean and Polar Engineering Conference (2018)




Tour de fracture...

Fracture of electrical things

with electromagnetic fields and mass diffusion.

Electric Field (magnitude)
0.01;

0.008
~ 0.006

= 0.004}

0.002

0 2 4 6 8§ 10

Damage and other peridynamic material properties can be coupled

Sandia
r" National

L)
X1y

3
x 10

Damage due to high-voltage
dielectric breakdown*

Laboratories
Physics Continuum Peridynamic kernel i g
Parameters
£e(,)= ce(E)s
Solid & —B Ju . _2E
Mechanics =7 Ox = Lﬂ]ﬂ{é) (Area)s?
T 3k,
— —k —_ T. . = K, =——————
Thermal q. ™ fr( f) K'quﬂ)t T (Area)é‘l
oD 3k,
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Electrical Jx = kg — £:(0,8)=x.g(& * = Uireals”
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Vacancy | J, T Q 3 || = D.C.g 'fl) Ao, 4 vz
Diffusion N T ] ik 18] | %o = i
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Peridynamic model for electromigration**

*Wildman & Gazonas, J Mechanics of Materials & Structures (2015)
**Gerstle, SS, Read, Tewary, Lehoucq, Comput Mater Continua (2008)

* S. Oterkus, Fox, & Madenci, in IEEE 63rd Electronic Components and Technology Conference (2013)



Tour de fracture... |
Fracture of sticky things ) S,

* Peridynamic bonds between different materials can model adhesion.

Pull straight up Pull up and forward Pull up, forward, and sideways

1‘ Boundary motion

Scotch tape

Nanofiber membrane*

*Bobaru, Modelling & Simulation in Materials Science and Engineering (2007)
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Tour de fracture... |
Fracture of wrinkly things ) 5.

* Peridynamic bonds between different materials can model adhesion.

Oscillatory crack path in a film dragged over a rigid cylinder*,**

(b)
/stretch _
stretch/ ‘\hcnd 9

Center crack in a brittle-elastic membrane* — \‘ |

(c) T i)

(a)

*Bobaru, Modelling & Simulation in Materials Science and Engineering (2007)
**Ghatak & Mahadevan, Physical review letters (2003)
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Blunt projectile vs. steel plate )

Laboratories

* Correspondence materials often work very well (requires stabilization).
* 30mm diameter 4340 steel cylinder onto 10.5mm thick HY-100 steel plate.
* Failure mode is plugging.

* Both materials use Johnson-Cook plasticity within a peridynamic correspondence
model.

V=169m/s
(no perforation) V=241m/s

Initial

V=246 m/s
Experiment
Forrestal & Hanchk, Int. ). Impact Eng. (1999)
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Blunt projectile vs. steel plate, ctd: )
Exit velocity and convergence

Laboratories

Residual velocity vs. impact velocity Residual velocity vs. grid spacing
T T
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2007: States rh) teima

* In general, each bond force should depend on the deformation of the entire family.
e State: a function that associates some number or vector with each bond.

* Example: Deformation state
Y& =yx+8 -yx

* This notation allows us to precisely define the bond force or other quantities for each bond in a

body.
* Cando algebra with states. Example: Dot product:

/A B(¢) AV

* SS, Epton, Weckner, Xu, & Askari, J Elasticity (2007)

* Madenci & E. Oterkus, Peridynamic Theory & Its Applications, Springer (2014)




State-based elasticity )

Laboratories

» State based material modeling is similar to conventional theory but with tensor gradients and
other operators replaced by their peridynamic analogues.

* PDE theory:

c="" dient)
= 3F ensor gradien

where o= stress tensor, W= strain energy, F= deformation gradient tensor.

* Peridynamics:
I = — (state gradient, i.e., Frechet derivative)

where T= force state, W= strain energy, Y = deformation state.

* SS, Epton, Weckner, Xu, & Askari, J Elasticity (2007)
* Madenci & E. Oterkus, Peridynamic Theory & Its Applications, Springer (2014)



2016: State-based fluids and soft )

materials

* Fluids can fracture.

Laboratories

* Long-range peridynamic forces can characterize surface and interface forces.

Gelatin bird strike simulant
VIDEO

Surface tension

» SS, Parks, Kamm, Weckner, & Rassaian, IntJImpact Engineering (2017)

Hydraulic ram
VIDEO
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2015: Multiphysical problems: Corrosion ()i

Laboratories

e Peridynamic simulation of corrosion pits and lacy covers*
e (Can use a peridynamic diffusion model for transport.

Experiment Simulation

.". \ \'_’f:t It

) "’
.‘.i x\'\u. “..

e Chen & Bobaru, JMPS (2015)

¢ Chen, Zhang, & Bobaru, J Electrochemical Society. (2016)

* De Meo, Diyaroglu, Zhu, E. Oterkus, & Siddig, Int J Hydrogen Energy (2016)
¢ De Meo & E. Oterkus, Ocean Engineering. (2017)

¢ Li, Chen, Tan, & Bobaru, Materials Science and Engineering: A. (2018)

e *Jafarzadeh, Chen, Zhao, & Bobaru, Corrosion Science (2019)




The nature of internal forces i

Standard theory

Stress tensor field

(assumes continuity of forces)

\ O
_1022

4—1-

ﬁ12
011 n

— on

Stress tensor maps surface

normal vectors onto
surface forces

pii(x,t) =V -a(x,t) + b(x,t)

Differentiation of surface forces

Peridynamics
Bond forces between neighboring points
(allowing discontinuity)

®q
/ f(q,%)
R\ 5

NS
7 (INS

Sandia
National
Laboratories

Force state maps bonds
onto bond forces

piiC,0) = [ F(a,x0dv, + b,
Hy

Summation over bond forces




