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Outline

• Peridynamics: What it is

• What it was originally intended to do

• Fracture

• What people have discovered it can do

• Lots of other stuff
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How does a crack nucleate and grow?
How does a continuous deformation become discontinuous?
• To study this, we need a model that seamlessly transitions from one to the other within a

consistent mathematical system.

FractAre Process Zone
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Crack process zone idealization**
Peridynamic simulation

Metallic glass crack tip*

*Hofmann et al, Nature (2008)
**Abhimanew, https://commons.wikimedia.org/wiki/File:Fracture Process Zone.gif
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Peridynamic answers to some simple
questions

• Why is fracture different from other kinds of deformation?

• It isn't.

• Why are special modeling techniques needed for fracture?

• They aren't.

• Why does nearly everybody think they are?

• Because nearly everybody uses partial differential equations (PDEs).

• What might work better?

• Integral equations.

Typical damage progression in a notched composite panel

(photo courtesy Boeing)
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Peridynamic* momentum balance
* Peri (near) + dyne (force)

• Any point x interacts directly with other points within a distance 6 called the "horizon."

• The material within a distance 6 of x is called the "family" of x, HX.

Peridynamic equilibrium equation

f(q. x) d144 b(x) = ()
Lx

f = bond force density (from the material
model, which includes damage)

3-Cx= family of x

• If f satisfies f(x, = —f (q, x) for all x, q then linear momentum is conserved.

• SS, J M PS (2000)
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What's been learned about...

Simple particle discretization
• Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

pST(x, t) = f x, t) dVx, b(x, t) PSTrz' f (xk, xi, t) AVk
ken

• Good:
• Simple.
• Linear and angular momentum conserved exactly.

Why: the discretized system is itself a peridynamic body.
• Bad:

• Dust!
• If Ax/8 is held constant, fails to converge to PDEs as 6 O.
• Fails patch test for irregular grids.

• Discontinuous Galerkin is another viable method (used in LS-DYNA).

• SS & Askari, Computers and Structures (2005)

• Bobaru, Yang, Alves, SS, Askari, & Xu, 1JNME (2009)

• Chen & Gunzburger, CMAME (2011)

• Du, Tian, & Zhao, SIAM J Numerical Analysis (2013)

• Tian & Du, SIAM J Numerical Analysis. (2014)

• Ganzenmüller, Hiermaier, May, in Meshfree methods for partial differential equations VII, Springer (2015)

• Seleson & Littlewood, Computers & Mathematics with Applications (2016)

• Du, in Handbook of peridynamic modeling (2016)
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Simplest material model: Microelastic

• Each bond acts like a linear spring.

f = C(g)(u(x + — u(x))M
• u= displacement
• M= deformed bond direction
• g= bond vector
• f= bond force
• c(g) = micromodulus (spring

constant)
• Micromodulus and horizon determine

the wave speeds.

• SS, JMPS (2000)

Bond A

force f

►
Bond extension =

(u(x + — u(x))

Buckling of a constrained microelastic rod

We get geometrical nonlinearity for free!
(Simulation includes contact forces.)
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Simplest material model for fracture:
Brittle microelastic
• Damage can be modeled by bond breakage.

• Breakage strain determines the energy release rate G/c.

Bond breakage

I4A

Bond extension

Slope = micromodulus

*SS & Askari, Computers and Structures (2005)

**Waxman & Guven, Wear (2019)

Hertzian cone crack in glass*
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Sand particle impact erodes a glass target**



Most commonly used capability:
Autonomous crack growth
• Cracks do what they want (grow, arrest, branch, curve, oscillate, ...)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • •

• •

• • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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• SS & Aska ri, Computers and Structures (2005)

Broken bond

Crack path
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Crack stability and mode transition
• Biaxial loading makes a crack turn.
• Center defect can grow in an S-shape.

• Biaxiality: B = ax/o-y.
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Observed crack paths in PMMA*

*Leevers, Radon, & Culver JMPS (1976)
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Early 2000's: Airplane crashes and
reinforced concrete
• Meshless discretization, simple contact algorithm, and geometrical nonlinearity are all important.

Emu simulation of F4 aircraft vs. concrete block*

INTRODUCTION TO
PRACTICAL PERIDYNAMICS
Computational Sofia Atecnanks WON. Stress arta Slesin

161)Weelt1 SCpentilie
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Model of rebar splice failure (courtesy W. Gerstle)

• Sugano et al, Nuclear Engineering and Design (1993)

• Gerstle, Sau, & SS, Nuclear Engineering and Design (2007)
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What's been learned about...

Damage laws beyond brittle microelastic
• The theory does not restrict what causes bonds to break. Examples:

f A
1

+
Bond extension

Adding a tail to the simple bond
breakage material decouples G1c

from the peak stress*

E22= 0.050

Stable damage 
Dynamic fracture

ii growth

>

0.100 0.121 0.127

Peridynamic crack nucleation using nonlocal damage mechanics**

Damage criterion that depends on shear*** can be calibrated to G11,

*SS, in Handbook of Peridynamic Modeling (2016)
**SS, in Handbook of Nonlocal Continuum Mechanics (2019)
***E. Oterkus, thesis, Univ of Arizona (2010)
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2010: Peridynamics reproduces
measured dynamic crack velocity
• Fracture in soda-lime glass using 3 different grid spacings*.
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• Ha & Bobaru, Int J Fracture (2010)

• *Agwai, Guven, & Madenci, IntJ Fracture (2011)

• Ha & Bobaru, Engin Fracture Mech (2011)

• Dipasquale, Zaccariotto, & Galvanetto, Int .1 Fracture (2014)

• Bobaru & Zhang, Int. J Fracture (2015)

• Zhou, Wang, & Qian, European.' Mechanics-A/Solids. (2016)
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Fracture animation
• Peridynamics is a viable method for making movies.

Chen, Zhu, Zhao, Li, & Wang, Computer Graphics Forum (2018)

Levine, Bargteil, Corsi, Tessendorf, & Geist, ACM S1GGRAPH/Eurographics symposium on Computer Animation (2014)
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Accumulation of damage:
Hammering on a block

Colors show damage
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Fragmentation due to impact

• Brittle cylinder vs. rigid plate at lkm/s.

Colors show damage
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Fracture driven by thermal stress
• A microelastic material model is easily modified to include thermal strain in bonds.

• A thermodynamically consistent state-based approach to thermoelasticity is available**.

Cold

Hot

Bond strain

• *Kilic & Madenci, Intl Fracture (2009)

• **S. Oterkus, Madenci, & Agwai, JMPS (2014)

• ***Jeon, Stewart, & Ahmed, Proc Royal Society A (2015)

• Xu, Zhang, Chen, & Bobaru, Int J Fracture (2018)

p. 18.1 36.1 ps 72.3 ps

Rupert test for thermal stress in glass**

Crack branching driven by a temperature

gradient*
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What's been learned about...

Crack nucleation
• Crack nucleation happens due a material instability.
• Happens when a perturbation of any point fails to induce a force in the opposite direction.
• Does not in general coincide with peak in a stress-strain curve.

U2

E = 0.0047

c = 0.0049

E = 0.0061

. < . 02Z0

• •

•• + •

 *7—<-1

  < 

Dynamic crack

Crack nucleation near a hole in a stretchd brittle-microelastic plate.
Unstable material surrounds a crack tip.

• SS, Weckner, Askari, & Bobaru, Intl Fracture (2010)
• Lipton, Lehoucq, & Jha, J Peridynamics & Nonlocal Modeling (2016)
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2009: Anisotropy a nd composites
• Apply different bond stiffness and breakage criteria in different directions.

a b

Second degree
Eighth degree

Bond stiffness as a function of direction using
spherical harmonics*

• Kilic, Agwai, & Madenci, Composite Structures (2009)

• E. Oterkus, thesis, Univ of Arizona (2010)

• Hu, Ha, & Bobaru, Int J Multiscale Comp Engin (2011)

• Hu, Ha, & Bobaru , CMAME (2012)

• *Ghajari, lannucci, & Curtis, CMAME (2014)

• Yu & Wang, Composite Structures (2014)

• S. Oterkus & Madenci, AIAA SciTech Forum (2014)

• Hu, De Carvalho, & Madenci, Composite Structures (2015)

• Su & Huang, Composite Structures (2016)

• Bobaru, Mehrmashhadi, Chen, & Niazi, US-Japan Conference on

Composite Materials (2018)

• Baber, Ranatunga, & Guven, J Composite Materials (2018)

• Trageser & Seleson, arXiv:1905.12761 (2019)

• Mikata, IJSS (2019)
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Bond stretch —

Fiber and matrix bonds

EMU simulations of failure modes in a notched

composite panel under tension for different layups
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Many validation studies have been done Sandia
National
Laboratories

• First issue of the new Journal of Peridynamics and Nonlocal Modeling has a review article by Diehl
on published validation to date:

Journal of Peodynamics and Nonlocal Modeling

https://doi.org/10.1007/s42102-018-0004,,

REVIEWS

A Review of Benchmark Experiments for the Validation
of Peridynamics Models

Patrick Diehlt • Serge Prudhomme2 - Martin Lévesquel

Received: 2 November 2018 / Accepted: 25 December 2018
© Springer Nature Switzerland AG 2019

Wee), 11.0e. bona

Journal of Peridynamics
Nonlocal Modeling

INNors-1.010et
union • smog 41 Springer

Table 3 Applications of bond-based and state-based peridynamics for the comparison with experimental data

Material Mechanical test ✓ S Exp Sim

Composite

Composite

Composite

Composite

Steel

Aluminum/Steel

Aluminum

Aluminum (6061-T6)

Concrete

Concrete

Concrete

Concrete

Glass

Glass

Glass

Glass

Glass

PMMA

PMMA

Soda-lime glass

Flexural test with an intial crack

Damage growth prediction (six-bolt specimen)

Damage prediction (center-cracked laminates)

Dynamic tension test (prenoteched rectangular plate)

Crack growth (Kalthoff-Winklcr)

Fracture (compact tension test)

Taylor impact test

Ballistic impact test

Lap-splice cxperimcnt

3-point bending beam

Failure in a Barazilian disk under compression

Anchor Bolt Pullout

Dynamic crack propagation (prenotched thin rectangular plate)

Impact damage with a thin polycarbonate backing

Single crack paths (quenched glass plate)

Multiple crack paths (quenched glass plate)

Crack tip propagation speed

Fast cracks in PMMA

Tensile test

Impact on a two-plate system

1 [75]

✓ [120]

✓ [6, 12, 69, 134]

1 [12, 65]

1 .4 [66-68]

1 [9, 77, 89, 91]

J [4, 21]

✓ [132]

✓ [a]
• [19, 63]

✓ [51]

1 [128]

1 [15, 36, 100]

✓ [8, 20, 40]

1 [13, 103, 136]

1 [102, 137]

1 [15]

✓ [39]

1 [124]

✓ [16, 130]

[2]

1961

[70]

[58]

[3, 52, 114, 144]

[135, 141, 142]

[3, 43, 45]

[127]

[481
[7, 51]

[54]

[83]

[2, 53, 144]

[59]

[71]

[71]

[52, 53, 144]

[2]

[32]

[130]

Legend: B refers to bond-based peridynarnics, S refers to state-based peridynamics, Exp to experimental data. and Sim to simulation
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2007: State-based material modeling

• Bond-based: each bond responds independently of the others.
• State-based: the deformation of the entire family collectively determines the bond forces.

• State-based momentum balance: pÿ(x, = fT[x](q — x) — T[q](x — q)}c/1/q + b(x)

• Example: compressible fluid

= k19 Y
(k) 

= dilatation of family
= (deformed volume)/(initial volume)-1

• SS, Epton, Weckner, Xu, & Askari, J Elasticity (2007)

• Madenci & E. Oterkus, Peridynamic Theory & Its Applications, Springer (2014)

f (q, x)

Hydraulic ram

VIDEO
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National
Laboratories

22



2014: State-based plates & shells
• A state-based model can resist the relative rotation of bonds in a family, i.e., bending.
• No need to create new field equations for beams, plates, & shells.

Y(-0

T(k) + T(-0

-T(k)

h - '

.
"`r h

a) /9‘L

a) 9 = 0°

r

b) 45° 90°

Fig. 7 Orhotropic plates with central crack under pure bending moment

214

7BE

ard•

•

ISM

1412

b) B= 45° c) = 90.

Bending and failure of orthotropic plates*

• O'Grady & Foster, Int J Solids & Structures (2014)

• Diyaroglu, E. Oterkus, S. Oterkus, & Madenci, Int J Solids & Structures (2015)

• Chowdhury, P. Roy, D. Roy, Reddy, Int J Solids & Structures (2016)

• *Tatan, Yolum, Güler, Zaccariotto, & Galvanetto, Procedia Structural Integrity (2016)

Sandia
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What's been learned about...

Correspondence materials
• This is a type of state-based material model that uses a stress tensor as an intermediate

quantity in computing bond forces.

Y(k) F a —) T(k)

• Good:
• Can use any material model from a finite

element code.
• Bad:

• Loose a lot of information about bonds.
• Stability issues especially zero-energy modes.

• Some overlap with SPH except for damage.

• SS, Epton, Weckner, Xu, & Askari, J Elasticity (2007)

• Warren, SS, Askari, Weckner, Epton, Xu, int J Solids & Structures (2009)

• Tupek & Radovitzky, JMPS (2014)

• Bessa, Foster, Belytschko, & Liu, Computational Mechanics (2014)

• *SS, CMAME (2017)

• Du & Tian, SIAM J Applied Math (2018)

• Foster & Xu, int J Solids & Structures (2018)

• Li, Hao, & Zhen, CMAME (2018)

• Nicely, Tang, & Qian, CMAME (2018)

• Chowdhury, P. Roy, D. Roy, & Reddy, CMAME (2019)

• Ganzenmüller, Hiermaier, May, Computers & Structures (2015)

Without stabilization
G= 0

With stabilization
G= 1.0

Correspondence material zero-energy

mode instability and stabilization*
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What's been learned about...

Ductile materials and failure
Loading
_

/
Unloading

Bond strain

^ Sandia
National
Laboratories

Johnson-Cook plasticity with
Wellman tearing model*

Microplastic: same as microelastic but with
permanent bond deformation Convergence

Total z—force through plane
80

• Can useh plasticity with correspondence material models.

• Crystal plasticity has been implemented**.

• Ordinary state based plasticity model appears possible***. 
o 

wO,- 40
u_

• Macek & SS, Finite Elements in Analysis and Design (2007)

• Foster, SS, & Chen, IJNME (2010)

• Foster, SS, & Chen, Intl Multiscale Computational Engineering (2011)

• ***Mitchell, Sandia tech report SAND2011-4974C (2011)

• *Wellman, Sandia tech report SAND2012-1343 (2012)

• **Sun & Sundararaghavan, Int l Solids Structures (2014)
• Amani, E. Oterkus, Areias, Zi, Nguyen-Thoi, & Rabczuk, Intl Impact Engineering (2016)
• Rahaman, P. Roy, D. Roy, & Reddy, CMAME (2017)

0 0.1

Nominal strain

0.2



What's been learned about...

Atomistics & peridynamics
Sandia
National
Laboratories

• Intuitively, the nonlocal nature of PD should make it more compatible with molecular dynamics than
the PDE theory is.

• A set of atoms can be represented as a PD body:
• Each is a delta function in space.
• Any interatomic potential can be included as a state-based PD material model.

• PD continuum equations can be derived from statistical mechanics using Irving-Kirkwood approach*.

Molecular dynamics
105

105

120

(a) MD: N. = 1001 (b) MD: N. = 1001

56

1

"

55

1050 5

115

.0

(c) Fine PD: N. = 1001

Peridynamic-,

(d) Coarse PD: N. = 501

Peridynamic model upscaled from the Embedded Atom Method**

a

115

(e) Coarse PD: Ni = 251

• Seleson, Parks, Gunzburger & Lehoucq, Multiscale Modeling & Simulation. (2009)

• **Seleson, thesis, Florida State Univ (2010)

• *Lehoucq & Sears, Phys Rev E (2011)

• Rahman & Haque, IntJ Computational Materials Science & Engineering. (2012)

• Seleson & Parks, in Handbook of Peridynamic Modeling (2016)

• Tong & Li, JMPS (2016)



What's been learned about...

Relation to the Cauchy theory
• In the limit of zero horizon:

• If the material model is stable (monotonic for all bonds):
• Peridynamic operator converges to Cauchy operator: f f V • a.

• Displacements approach solutions in the Cauchy theory.
• Peridynamic stress tensor approaches Cauchy stress.
• Waves become non-dispersive.
• Boundary conditions converge to expected forms.

• Otherwise:
• Converges to a deformation with Griffith cracks (!).

• Emmrich & Weckner, Comm Math Sci (2007)

• SS & Lehoucq, J Elasticity (2008)

• Zhou & Du, SIAM J Numerical Analysis (2010)

• Du & Zhou, ESAIM (2011)

• Hinds & Radu, Appl Math & Computation (2012)

• Erbay, Erkip, Muslu, J Differential Equations (2012)

• Du, Gunzburger, Lehoucq, & Zhou, J Elasticity (2013)

• Emmrich & Puhst, Comm Math Sci (2013)

• Mengesha & Du, Discrete Contin. Dynam. Systems B (2013)

• Bellido & Mora-Corral, SIAM J Math Analysis (2014)

• Lipton, J Elasticity (2014, 2015)

• Mangesha & Du, J Elasticity (2014)

• Mengesha & Du, Proc Royal Society Edinburgh A: Math (2014).

• Lipton, Lehoucq, & Jha, J Peridynamics & Nonlocal Modeling (2016)

• Du, in Handbook of Peridynamic Modeling, Taylor & Francis (2016)

• Coclite, Dipierro, Maddalena, & Valdinoci, Nonlinearity (2018)

Sandia
National
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Crack growth in a nonconvex
(unstable) peridynamic material

•
Bond

force(\ '
Bond strain
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What's been learned about...

Usability issues

• Boundary conditions in peridynamics are different than with PDEs:
• Integral equations are more compatible with "volume constraints".

• Surface effect:
• Materials take on altered properties near free surfaces and interfaces.

• Dust:
• In the simple particle discretization, nodes tend to break off completely once

damage starts to occur.
• Many ideas have been proposed and demonstrated for mitigating these effects.

• But software tools need to make peridynamics look more like just an option that
works seamlessly.

• LS-DYNA has made a lot of progress.
• RKPM
• Peridiynamic Differential Operator

• Macek & SS, Finite Elements in Analysis & Design (2007)

• Kilic, thesis, Univ of Arizona (2008)

• Mitchell, SS, Littlewood, J Mechanics of Materials & Structures (2015)

• Le & Bobaru, Computational Mechanics (2018)

• Madenci, Barut, & Dorduncu, Peridynamic Differential Operator of Numerical Analysis, Springer (2019)

• Bessa, Foster, Belytschko, & Liu, Computational Mechanics (2014).

• Pasetto, Leng, Chen, Foster, & Seleson, CMAME.(2018).

• Hillman, Pasetto, & Zhou. "Generalized Reproducing Kernel Peridynamics...", researchgate.net (2019).

Sandia
National
Laboratories
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What's been learned about...

Dispersive waves and the horizon
• Linear waves are dispersive in peridynamics.

• Useful! (sometimes)
• All real materials are dispersive to some extent.

f = C (0(u(x + — u(x))

•
Micromodulus C(4)

Bond length

Horizon 6

Many choices of Cg) can lead to the
same bulk elastic modulus

• Weckner & SS, IntJ Multiscale Computational Engineering (2011)
• Butt, Timothy, & Meschke, Computational Mechanics (2017)
• *Qian, Jin, Wang, & Kishimoto, Int .1 Engineering Science (2004)
• Bobaru & Hu, Int .1 Fracture (2012)

o
kh, Wave Number

Real dispersion curves in a composite*

• Wave speed

Z11/6

 ►
Wavenumber k

The choice of C(Ocan be matched to
dispersion data

Sandia
National
Laboratories
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What's been learned about...

Quasi-static problems
Sandia
National
Laboratories

• Large number of bonds results in dense matrices.
• Great difficulty storing and manipulating these.
• Solvers that are effective with FEM generally are not so good with peridynamics.

• Matrix can become ill-conditioned or singular if there is damage.
• Dynamic relaxation is often the most effective method.

• But has known problems.
• Better iterative solvers would be a good thing.

• Kilic & Madenci, Theoretical & Applied Fracture Mechanics (2010)

• Breitenfeld, Geubelle, Weckner, & SS, CMAME (2014)

• Zaccariotto, Luongo, & Galvanetto, Aeronautical Journal (2015)

• Du, Gunzburger, Lehoucq, Zhou, SIAM Review (2012)

• Katiyar, Foster, Ouchi, Sharma, J Computational Physics (2014)

• Jabakhanji & Mohtar, Adv Water Resources (2015)

• Ouchi, Katiyar, York, Foster, & Sharma, Computational Mechanics (2015)

• De Meo, Diyaroglu, Zhu, E. Oterkus, Siddiq. Int J Hydrogen Energy. (2016)

• S. Oterkus, Madenci, & E. Oterkus, Engineering Geology (2017)

• Chen & Bobaru, JMPS (2015)

• Chen, Zhang, & Bobaru, J Electrochemical Society. (2016)

• De Meo, Diyaroglu, Zhu, E. Oterkus, & Siddiq, Int J Hydrogen Energy (2016)

• De Meo & E. Oterkus, Ocean Engineering. (2017)

• Li, Chen, Tan, & Bobaru, Materials Science and Engineering: A. (2018)

• *Jafarzadeh, Chen, Zhao, & Bobaru, Corrosion Science (2019)

Peridynamic simulation of corrosion pit growth*
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Where peridynamics is now
• Basic mechanical and mathematical principles have been worked out.

• Sky is the limit in dreaming up new materials.

• People are continually discovering new applications.

• Well-posedness and relation to other theories is understood.

• Simple meshless discretization is still the workhorse but has some issues (DG is good too).

• Possible fertile areas for growth:

• Atomistics: A2C coupling, coarse-graining.

• Fundamentals of fracture.

• Multiscale.

• Fluids and fluid-structure coupling.

• Post-failure behavior of solids.

• Coupling of different physics.

• FEM implementation.

• Implicit solvers.

• Material & structural stability*.

• Nonlocal waves*.

• Models from pixels.

• Eulerian balance laws.

• Fast integration methods.

• Chemical reactions.

• Geological media & flow.

*Personal fave
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What's been learned about...

Nonlocal waves
Sandia
National
Laboratories

• Linear waves are dispersive in peridynamics.
• Just by choosing the right nonlocal peridynamic material model, we can reproduce solitary waves.

• Local theory cannot do this without replacing the governing 2nd order PDEs with 4th order.
• E.g., KdV equation.

Pairwise bond
force density f

—So

Slope c

Bond strain s

Nonlinear microelastic material model for a bond

• SS, JMPS (2016)

• Pego & Va n, J Elasticity (2018)

Di
sp
la
ce
me
nt
 u
(
m
)
 IN

Nonlinear material:

Solitary waves

Linear rnaterial:

Dispersive wave

Pasition x(m)

Simulated dispersive waves and solitary waves.
Impact on left edge of a bar.
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2018: Ingeniously heterogeneous

materials
• Peridynamic differential operator (PDDO):

dP f (x) 
= I f (x + e)gPN(x e) de, gPN = >_:;1/4 411,,q(e)eq

dxP
q=0

where the wq are weighting functions and there is a procedure for deter-
mining the 4 at each point

• Replace derivatives in an ODE or PDE with a discretized form of the
above, solve.

• Result is an accurate solution to the ODE or PDE using expressions that
look just like peridynarnics.

• Cost of this accuracy: the corresponding peridynamic material model is
nonhomogeneous.

• Also there has been a lot of progress on RKPM for peridynamics.

• Madenci, Barut, & Dorduncu, Peridynamic Differential Operator of Numerical Analysis, Springer (2019)

• Bessa, Foster, Belytschko, & Liu, Computational Mechanics (2014).

• Pasetto, Leng, Chen, Foster, & Seleson, CMAME.(2018).

• Hillman, Pasetto, & Zhou. "Generalized Reproducing Kernel Peridynamics...", researchgate.net (2019).

0Sandia
National
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2012: Nonlocal diffusion

• A possible nonlocal mass diffusion law:

)(x) = D(q — x)(x (q) — (x) 7 (/1 ;1

where x is concentration and D is the microconductivity.

• D can depend on bond breakage or other variables.

• Bond breakage parameters can depend on x.

• Du, Gunzburger, Lehoucq, Zhou, SIAM Review (2012)

• Katiyar, Foster, Ouchi, Sharma, J Computational Physics (2014)

• Chen & Bobaru, JMPS (2015)

• Jabakhanji & Mohtar, Adv Water Resources (2015)

• Ouchi, Katiyar, York, Foster, & Sharma, Computational Mechanics (2015)

• De Meo, Diyaroglu, Zhu, E. Oterkus, Siddiq. Int J Hydrogen Energy. (2016)

• S. Oterkus, Madenci, & E. Oterkus, Engineering Geology (2017)
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Fatigue with contaminant transport



2010: State-based thermodynamics

• First law:
= T • I.L7 h

where (.=internal energy density, h=rate of heat transport, and r=source
rate.

• The integral in the first law only sums up the part of the bond forces due
to its own material model.

• Second law:
di)

where 0=temperature and ii=entropy density.

• Typical nonlocal heat transport model:

h(x)  K(ci — x)(0(q) — 0(x)) di7q

where K is the microconductivity.

• SS & Lehoucq, Advances in Applied Mechanics (2010)

• Bobaru & Duangpanya, Int J Heat & Mass Transfer (2010)

• S. Oterkus, Madenci, & Agwai, J Computational Physics (2014)

• E. Oterkus & Madenci, Peridynamic Theory & Its Applications, Springer (2014)

• Chen & Bobaru, Computer Physics Comm (2015)
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Tour de fracture...

Mirror-mist-hackle transition in glass
Sandia
National
Laboratories

• Model predicts roughness and microbranches that increase in size as the crack grows.
• Transition radius decreases as initial stress increases — trend agrees with experiments.

3D peridynamic model

* Castilone, Glaesemann & Hanson, Proc. SPIE (2002)

Fracture surface in a glass optical fiber*
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Tour de fracture...

Fracture of cold things
• Researchers are using peridynamics to model the behavior of floating ice.

10 95
0 9
0 85
0 8
0 75
0 7

de
0 55
0 5
0 45
0 4
0 35
0 3
0 25
0.2
0 15
0 1
005

Floating ice vs. propeller*
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Floating ice vs. rigid cylindrical structure**

Floating ice vs. rigid slope***

*Ye, Wang, Chang, & Zhang, Ocean Engineering (2017)

**Vazic, E. Oterkus, & S. Oterkus, in Proc 7th International Conference on Marine Structures (2019)

***Lu, Wang, Jia, & Shi, in 28th International Ocean and Polar Engineering Conference (2018)
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Tour de fracture...

Fracture of electrical things
• Damage and other peridynamic material properties can be coupled

with electromagnetic fields and mass diffusion.

Electric Field (magnitude)
0.01

0.008

0.006

0.004

0.002

0
4 6 8 10

x Hr3

Damage due to high-voltage

dielectric breakdown*
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Peridynamic model for electromigration**

• *Wildman & Gazonas, J Mechanics of Materials & Structures (2015)

• **Gerstle, SS, Read, Tewary, Lehoucq, Comput Mater Continua (2008)

• S. Oterkus, Fox, & Madenci, in IEEE 63rd Electronic Components and Technology Conference (2013)
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Tour de fracture...

Fracture of sticky things
• Peridynamic bonds between different materials can model adhesion.

Boundary motion

Pull up and forward Pull up, forward, and sideways

Scotch tape

Nanofiber membrane*

*Bobaru, Modelling & Simulation in Materials Science and Engineering (2007)

Sandia
National
Laboratories

40



Tour de fracture...

Fracture of wrinkly things
• Peridynamic bonds between different materials can model adhesion.

Sandia
National
Laboratories

Oscillatory crack path in a film dragged over a rigid cylinder*,**

(a)

Center crack in a brittle-elastic membrane*

*Bobaru, Modelling & Simulation in Materials Science and Engineering (2007)
**Ghatak & Mahadevan, Physical review letters (2003)



Blunt projectile vs. steel plate
• Correspondence materials often work very well (requires stabilization).

• 30mm diameter 4340 steel cylinder onto 10.5mm thick HY-100 steel plate.
• Failure mode is plugging.
• Both materials use Johnson-Cook plasticity within a peridynamic correspondence

model.

V = 169m/s
(no perforation)

Sandia
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V = 246 m/s

Experiment
Forrestal & Hanchk, Int. J. Impact Eng. (1999)
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Blunt projectile vs. steel plate, ctd:
Exit velocity and convergence
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2007: States
• In general, each bond force should depend on the deformation of the entire family.
• State: a function that associates some number or vector with each bond.

• Example: Deformation state

Sandia
National
Laboratories

Y(k) = 31(x + y(x)
• This notation allows us to precisely define the bond force or other quantities for each bond in a

body.
• Can do algebra with states. Example: Dot product:

A • B = j. A_() .B() (11.

• SS, Epton, Weckner, Xu, & Askari, J Elasticity (2007)

• Madenci & E. Oterkus, Peridynamic Theory & its Applications, Springer (2014)
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State-based elasticity Sandia
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• State based material modeling is similar to conventional theory but with tensor gradients and
other operators replaced by their peridynamic analogues.

• PDE theory:
awa = 
aF (tensor gradient)

where a= stress tensor, W= strain energy, F= deformation gradient tensor.

• Peridynamics:
aw

T =  ay (state gradient, i.e., Frechet derivative)

where T= force state, W= strain energy, Y = deformation state.

• SS, Epton, Weckner, Xu, & Askari, J Elasticity (2007)

• Madenci & E. Oterkus, Peridynamic Theory & Its Applications, Springer (2014)
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2016: State-based fluids and soft
materials
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• Fluids can fracture.
• Long-range peridynamic forces can characterize surface and interface forces.

Gelatin bird strike simulant

VIDEO

• SS, Parks, Kamm, Weckner, & Rassaian, Int J Impact Engineering (2017)

Hydraulic ram

VIDEO
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2015: Multiphysical problems: Corrosion
• Peridynamic simulation of corrosion pits and lacy covers*
• Can use a peridynamic diffusion model for transport.

Experiment

Pf. 

II '

4 4 ,41100. i ,e% lb
I if Y.: 1 . '
1 c 0 1%. • 4 Is
% S •• die , „ • "1"6 i :

• Ili st,::... s'i 1 ,

i j16 , 4.:/' i

0

Simulation

diagonal

cross-section

• Chen & Bobaru, JMPS (2015)

• Chen, Zhang, & Bobaru, J Electrochemical Society. (2016)

• De Meo, Diyaroglu, Zhu, E. Oterkus, & Siddiq, lnt J Hydrogen Energy (2016)

• De Meo & E. Oterkus, Ocean Engineering. (2017)

• Li, Chen, Tan, & Bobaru, Materials Science and Engineering: A. (2018)

• *Jafarzadeh, Chen, Zhao, & Bobaru, Corrosion Science (2019)
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The nature of internal forces

Standard theory 
Stress tensor field

(assumes continuity of forces)

Stress tensor  maps surface
normal vectors onto

surface forces

pii(x , t) = V • cf(x , t) + b (x , t)

Differentiation of surface forces

Peridynamics 
Bond forces between neighboring points

(allowing discontinuity)

Sandia
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Force state  maps bonds
onto bond forces

pii(x , t) = f f (q , x) dVg + b(x , t)

Hx

Summation over bond forces
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