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2 | Motivation

Complex components and structures cannot always be
calibrated at at the material level.

* Material isn’t homogenous in structure

* Complex mechanics not captured

Structural Calibration

Image: [1]

[1] Grimmer, P.W., Mersch, J. P., Smith, J. A., Veytskin, Y.B., Susan, D.F., “Modeling Empirical Size Relationships on Load-Displacement
Behavior and Failure in Threaded Fasteners” 2019 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA
SciTech Forum, AIAA2019-2268, San Diego, CA, 2019.

Material Calibration
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Sometimes, calibration at the structural level is necessary
to obtain best performance for components.

Cannot directly obtain true stress-strain behavior
Measurements are non-local so more complex models
are necessary to calibrate effectively

Need a tool that can perform
structural calibrations




| Outline

Conventional Hardening Curve Calibration Methods
Incremental Calibration Method

Considerations for Structural Calibration

Examples
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Hardening Curve Calibration: Conventional Methods
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s I Hardening Curve Calibration: Incremental Method

Alternative approach is to use an incremental solution strategy,
calibrating each individual segment of the piecewise linear hardening
curve

* Increased flexibility — not as limited by model form

* Now can use a root finding algorithm rather than cost function

minimization

Still performing an inverse problem, so post-peak stress behavior
can be calibrated.

* Calculating equivalent stress-strain from a uniaxial tension test only valid
to ultimate load

* Incremental method is faster — not running full simulation each time.

The incremental method provides an efficient
approach for material parameter calibration
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I Considerations for Calibrating Structural Models

Complex strain gradients complicate material calibration, especially incremental approaches
*Load values are sensitive to multiple points on the hardening curve
*Don’t want to calibrate all the way out to the maximum plastic strain seen in the model

*Solution: cut back the applied displacement for the next iteration, and cutback the
point on the hardening curve you calibrate to accordingly.
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Example: Uniaxial Tension — Capturing Post-Peak Behavior

A.) FE model--symmetry BC's used to
represent full cylinder.

B.) Load vs Displacement Incremental
Calibration Results

C.) “Truth” hardening curve compared to
the calibrated hardening curve

D.) Model re-ran once with calibrated

hardening curve to verify the incremental
approach matches the final model
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3500 A

Calibrating two different fastener models to tension load-displacement test data el

2500 A

Hardening curves not the same - different mechanics
are captured in the model and the structures
material properties must change accordingly.
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» I Example: Fastener Models — Calibrating Structural Response I:q
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*Why calibrate multiple levels of fidelity?

*While they give the same response in tension, the higher fidelity threaded model gives more reasonable results
in shear

*More geometric and mesh fidelity allows for more generally accurate model
Shear Results
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Improving the ultimate failure prediction would
be possible with a better material failure model

o | Example: Fastener Models I:q
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« 1 Conclusions
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Developed tool that can efficiently calibrate models at a structural level.

*Enables the calibration of complex components such as fasteners

*Can perform calibrations for unique loadings and loading conditions

Still utilizing an incremental approach
*Not running full simulation — time saved in calibration
*Maintaining model flexibility — not limited by model form
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Thank you!

Questions?

Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.



s I Nonlinear Material Model Calibration

Background: what is being calibrated?

Broad

Specific to this talk

Nonlinear solid mechanics
Material modeling
J2 Metal Plasticity

Strain Hardening
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*At Sandia we perform nonlinear solid

“* Nonlinear Solid Mechanics I:q

mechanics simulations of various systems Contact: initially, the two
bodies do note exert force on
* Nonlinear : the solution doesn’t scale each other, but after some

displacement they abruptly do

proportionally to the applied loading

*In general the solution must be solved
incrementally

*Types of nonlinearity in solid mechanics
simulations

* Contact
Geometric: the initially straight
beam buckles after some loading,

* Material leading to a reduction in load
*'This is the aspect that usually needs to be calibrated carrying capacity

* Geometric (large deformations)

While we rely on our FEA codes to accurately simulate contact and geometric nonlinearities, material
nonlinearity is largely modeled phenomenologically, dictated by user-defined parameters

I D e



s | Material Modeling

*TFor solid mechanics, materials are often classified according to their:  Tension test of a notched stainless steel 304L specimen [1]
*Homogeneity: spatial variation

* Anisotropy: directional dependence

*Nonlinearity: how does stiffness change with strain?

*Inelasticity: if unloaded, does material return to original state?
*Whether a material can be considered homogeneous or 1sotropic
depends on the length-scales of interest.

*For most practical engineering calculations for metal structures, we
assume isotropic and homogeneous materials.

*Beyond very small strains, metals yield and have inelastic, nonlinear
deformations (plasticity).

far-field force (N)

*FEA of components for design evaluation can assume linear
elasticity and still be extremely valuable

*However, if you want to accurately simulate the response of metal 500
components under large deformations, must account for their —— experimental data, Boyce
plasticity % a1 sz s o4 05 o5 o7

* If extreme loading is involved, material failure may also need to be modeled extensometer gauge displacement (mm)

[1] Emery et. al., 2015 (https://doi.org/10.1002/nme.4935)



« I ]2 Metal Plasticity - -

: o o 0] — 3 § i
*Stress tensor can be decomposed into: }-; 7{7;11 yr  Tyy TYz o

. . . z 022 O‘ O' O‘
*Volume changing (volumetric) deformation 2T 2y 2z

* Related to normal stresses 1
0ij = Sij + 30kk0ij

*Shape changing (deviatoric) portion Jo = 18,8
* Related to shear stresses Tum = /3J2

*Metals generally plastically deform due to
deviatoric stresses S

*The “second invariant” of the deviatoric Oom = \/%[(01 —02)% 4 (02 — 03)% + (03 — 01)?]

stress tensor is called J2.

o0y
*Von Mises stress comes from |2 01 =0, = 03
* Conveniently, Von Mises stress is equal to applied stress in

uniaxial tension

*Von Mises is a common “yield criterion” for metals
* Von Mises stress defines a cylindrical 3D yield surface in

“principal stress space”, with its axis along hydrostatic stress e \ g
princip pace, &y j Yield surface

states P N -

* If a given material element’s principal stresses give a Von Mises
stress that is higher than the yield stress, the element will b
deform plastically s



» | Strain Hardening

°If a metal continues to be loaded past
yield, it begins “hardening”
* Complicated microstructural causes that can’t be

practically modeled, so phenomenological models are
used

*This can be understood as the yield surface expanding
(isotropic hardening) or translating (kinematic
hardening) to accommodate the increasing Von Mises
stress

*Very ductile alloys (e.g. 304L stainless steel) can
accommodate a lot of plastlc strain/hardening before
fracture

* For ]2 plasticity, the hardening behavior can be described with
a “hardening curve”
* This can be obtained from a uniaxial tension test, up until
necking

°In general, a hardening curve can only be directly obtained
from a test if the test has a uniform state of strain (or if one
can reasonably be assumed)

* If not, an inverse calibration procedure must be used

We often need to calibrate the hardening
curve for a given material model so that it
gives the correct response in a system model
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