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1 Motivation
2

Complex components and structures cannot always be

calibrated at at the material level.

• Material isn't homogenous in structure

• Complex mechanics not captured
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Sometimes, calibration at the structural level is necessary

to obtain best performance for components.

• Cannot directly obtain true stress-strain behavior

• Measurements are non-local so more complex models

are necessary to calibrate effectively

Need a tool that can perform
structural calibrations



3 1 Outline

• Conventional Hardening Curve Calibration Methods
• Incremental Calibration Method
• Considerations for Structural Calibration

• Examples
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I4 
Hardening Curve Calibration: Conventional Methods
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measurements
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Repeatedly simulate FE model,
optimizing design variables so that
the model output better matches
the test data.
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Method #2: General Inverse FEA Optimization Approach Displacement



I5 Hardening Curve Calibration: Incremental Method

Alternative approach is to use an incremental solution strategy,
calibrating each individual segment of the piecewise linear hardening
curve
• Increased flexibility — not as limited by model form

• Now can use a root finding algorithm rather than cost function
minimization

Still performing an inverse problem, so post-peak stress behavior
can be calibrated.
• Calculating equivalent stress-strain from a uniaxial tension test only valid
to ultimate load

• Incremental method is faster — not running full simulation each time.

The incremental method provides an efficient
approach for material parameter calibration
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6 I Considerations for Calibrating Structural Models

Complex strain gradients complicate material calibration, especially incremental approaches

• Load values are sensitive to multiple points on the hardening curve

• Don't want to calibrate all the way out to the maximum plastic strain seen in the model

Solution: cut back the applied displacement for the next iteration, and cutback the
point on the hardening curve you calibrate to accordingly.
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This method facilitates structural models to be more
effectively calibrated to arbitrary load-displacement responses
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7 I Example: Uniaxial Tension — Capturing Post-Peak Behavior

A.) FE model--symmetry BC's used to
represent full cylinder.

B.) Load vs Displacement Incremental
Calibration Results

C.) "Truth" hardening curve compared to
the calibrated hardening curve

D.) Model re-ran once with calibrated
hardening curve to verify the incremental
approach matches the final model
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I8 Example: Fastener Models — Calibrating Structural Response

Calibrating two different fastener models to tension load-displacement test data

Hardening curves not the same - different mechanics
are captured in the model and the structures
material properties must change accordingly.
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I9 Example: Fastener Models — Calibrating Structural Response

Calibrating two different fastener models to tension load-displacement test data

Hardening curves not the same - different mechanics
are captured in the model and the structures
material properties must change accordingly.
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10 Example: Fastener Models

•Why calibrate multiple levels of fidelity?
• While they give the same response in tension, the higher fidelity threaded model gives more reasonable results
in shear

• More geometric and mesh fidelity allows for more generally accurate model
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Improving the ultimate failure prediction would
be possible with a better material failure model



Conclusions

Developed tool that can efficiently calibrate models at a structural level.

Enables the calibration of complex components such as fasteners

Can perform calibrations for unique loadings and loading conditions

Still utilizing an incremental approach
-Not running full simulation — time saved in calibration

*Maintaining model flexibility — not limited by model form
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Thank you!

Questions?

Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy's National Nuclear Security Administration
under contract DE-NA0003525.



13 Nonlinear Material Model Calibration

Background: what is being calibrated?

Broad

Nonlinear solid mechanics

Material modeling

J2 Metal Plasticity

Strain Hardening

Specific to this talk

Effective Stress

(Von Mises)

ayield

Load

so."......h.

....••'•...

.00.

• • • • Model Initial Guess

Model Calibrated

Effective Plastic Strain

Experiment

Model Initial Guess

Model Calibrated

Displacement



14 1

Nonlinear Solid Mechanics

At Sandia we perform nonlinear solid
mechanics simulations of various systems

Nonlinear: the solution doesn't scale
proportionally to the applied loading
In general the solution must be solved
incrementally

Types of nonlinearity in solid mechanics
simulations
• Contact

• Geometric (large deformations)

• Material

•This is the aspect that usually needs to be calibrated

Contact: initially, the two
bodies do note exert force on
each other, but after some
displacement they abruptly do

Geometric: the initially straight
beam buckles after some loading,
leading to a reduction in load
carrying capacity

,.......'.

While we rely on our FEA codes to accurately simulate contact and geometric nonlinearities, material
nonlinearity is largely modeled phenomenologically, dictated by user-defined parameters



15 I Material Modeling

For solid mechanics, materials are often classified according to their:
• Homogeneity: spatial variation

*Anisotropy: directional dependence

'Nonlinearity: how does stiffness change with strain?

Inelasticity: if unloaded, does material return to original state?

Whether a material can be considered homogeneous or isotropic
depends on the length-scales of interest.
For most practical engineering calculations for metal structures, we
assume isotropic and homogeneous materials.

Beyond very small strains, metals yield and have inelastic, nonlinear
deformations (plasticity).
F   KA of components for design evaluation can assume linear
elasticity and still be extremely valuable

However, if you want to accurately simulate the response of metal
components under large deformations, must account for their
plasticity
If extreme loading is involved, material failure may also need to be modeled
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16 I J2 Metal Plasticity

Stress tensor can be decomposed into:
Volume changing (volumetric) deformation
•Related to normal stresses

•Shape changing (deviatoric) portion
• Related to shear stresses

•Metals generally plastically deform due to
deviatoric stresses S
The "second invariant" of the deviatoric
stress tensor is called J2.

•Von Mises stress comes from J2
• Conveniently, Von Mises stress is equal to applied stress in
uniaxial tension

• Von Mises is a common "yield criterion" for metals
• Von Mises stress defines a cylindrical 3D yield surface in
"principal stress space", with its axis along hydrostatic stress
states

• If a given material element's principal stresses give a Von Mises
stress that is higher than the yield stress, the element will
deform plastically
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1, Strain Hardening

*If a metal continues to be loaded past
yield, it begins "hardening'
• Complicated microstructural causes that can't be
practically modeled, so phenomenological models are
used

*This can be understood as the yield surface expanding
(isotropic hardening) or translating (kinematic
hardening) to accommodate the increasing Von Mises
stress

•Very ductile alloys (e.g. 304L stainless steel) can
accommodate a lot of plastic strain/hardening before
fracture

• For J2 plasticity, the hardening behavior can be described with
a "hardening curve"
• This can be obtained from a uniaxial tension test, up until
necking

•In general, a hardening curve can only be directly obtained
from a test if the test has a uniform state of strain (or if one
can reasonably be assumed)
• If not, an inverse calibration procedure must be used

We often need to calibrate the hardening
curve for a given material model so that it
gives the correct response in a system model
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