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Intro: Organic material decomposition
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Organic materials are everywhere,
unfortunately they burn

• A downside - decompose @ 250°C

• Motivation: Fire safety
• Temperatures > 1000°C in building fires, jet-fuel fires

• Thermal decomposition: Material Char + Gas
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TGA data: Mass loss history

• Thermogravimetric Analysis (TGA): Mg size sample, isolates
chemical kinetics

• Record mass loss history M(T(t)), time, temperature
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Derivative data: Mass-loss derivative with respect to
temperature

• Finite-differenced mass-loss derivative history ddi\74-
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Derivative data: Mass-loss derivative with respect to
temperature

• Finite-differenced mass-loss derivative history dMdT
• Easier to see separate reactions
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Objective

■ Given
■ TGA data
■ A proposed kinetics mechanism
■ State-of-the-art calibration methods

Part 1. Q: How can we improve calibration results?
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Objective

• Given
• TGA data
• A proposed kinetics mechanism
• State-of-the-art calibration methods

Part 1. Q: How can we improve calibration results?

Part 2. A: Exploit mathematical properties for fast, robust,
deterministic calibration

Part 3. A: Gain UQ insights using Bayesian calibration
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Uncertain parameters to calibrate

Materiall —> Gas
Material2 —> vcChar + (1 — vc)Gas

dMi

dt
= —Ai exp (— Mi t

• Total of 9 parameters to calibrate
• (Ai, ni) for each reaction i
• (Prefactor, activation energy, order)
• Initial mass fractions
• Char rate coefficient vc

• Method: Globalized Newton-type (optpp_fd newton,
'trust_region'; rol)

• Data is synthetic—Assess results against a "truth set" of
synthetic parameters
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How to quantify goodness of fit

• Need a data misfit metric

• Objective function choices: Which data/features to prioritize
fitting?
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(50-50) Hybrid misfit

f3(m) = A.f 1 + (1 — A)f2, A = 0.5 8



An unintuitive result: Derivative objective does not
lead to the best derivative data fit
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Optimization history with derivative misfit

KI

.100 Bt. 1.6 0

- 3005.5311
-3005110., 105C/633
- 333153,165C/ni
-.16.15515.

ZU:

4

360 100 460 603 650 WO

peretwe (T)

10



Comparison of fit value history, different objective
functions, same IC
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Contour slices: Why derivative misfit is worse
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• Both objective functions have the same minimum

• But, mass misfit convex on a wider interval

• Advanced methods shine when objective function is
bowl-like.
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Parameter UQ w/ Bayesian calibration
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Why and how: Bayesian UQ with DRAM

Prim . Vtiaar we thou& Mc pantic for Er mi..

Payee theorem (incorporate information in prior, dam, model likelihood)

• Important differences—no truth, subjective prior, simplicity

• TGA: Characterize uncertainty around parameter choices
(from deterministic calibration)

• Bayes theorem: Posterior oc Prior x Likelihood

• New in Dakota: DRAM for Bayesian calibration
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Bayesian calibration: Data reduced the uncertainty
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Prior: What we thought the range / probability for E1 was.
Posterior: (After 750,000 samples) — What we can infer now about E1, using
Bayes theorem (incorporate information in prior, data, model likelihood)
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Usefulness beyond posterior pdfs,
application-dependent
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• Is risk management the UQ
goal?

• Posterior credibility

envelopes contain a

snapshot of current state
of knowledge

• E.g., probability of Organic
Material X losing mass
before 150°C is 1%.
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Conclusions: TGA calibration with advanced methods

• Deterministic calibration

• Recommend fitting mass data, even if fitting derivative data is
the objective

• More convex objective function
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Conclusions: TGA calibration with advanced methods

■ Deterministic calibration
■ Recommend fitting mass data, even if fitting derivative data is

the objective
■ More convex objective function

■ Bayesian calibration
■ A new/different UQ tool
■ Understand uncertain parameters for fire safety analysis

■ Fire safety application: Sometimes, a large gap between
advanced tools and their use in engineering...

• ...Also means there are a lot of opportunities!

17


