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Motivation for laser weld failure modeling

"We use laser welds to assemble components and create hermetically sealed volumes
=Laser welds exhibit large variability in structural performance

"We seek to model the welds and their variability to ensure components meet requirements
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Initial model - ignoring geometric details

Goal: Accurately model observed variability in laser weld failure in a manner that can be implemented in full

system and component models. 3500 . . . .
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Initial Modeling Plan: Resolve stresses in idealized laser weld geometries and lump observed variability into

material property variability regardless of the source of the variability. Propagate laser weld uncertainty through model
R | | of interest using Stochastic Reduced Order

Model (SROM):
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Calibrating and validating initial model Yield candition:

10 specimens for 10 specimens for 8 specimens for
each orientation each orientation  €ach orientation

: 1/n
YoYr (0) |14 sinh™ (%) + K = 0cq(04)

Hardening behavior: Weld failure:
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Vertical Strain
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Motivation for image-based modeling
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Motivation for image-based modeling
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Sealed volume in a quasi-static crush:
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Revisiting 304L SS laser weld modeling approach

*Lumping behavior into material model is not predictive

" New Goal Determine root cause of variability and revisit component and system -
scale laser weld modeling approach.
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Investigating effects of laser weld geometry on 304L SS weld performance e

Generate void and unwelded Subtract voids and unwelded

CT jmage Stack ﬁ region meSh USIHg pythOﬂ # fegiOﬂ from test part USing
Sculpt and Cubit

Plan to test hypothesis:
1.Mesh CT scans of laser weld
ipecimens to get a high
1delity geometric model of
test specimens.

and Sculpt

Generated meshes are on the order of 10 million elements with a
minimum mesh size of ~17 microns, the size of the CT scan voxel.



Investigating effects of laser weld geometry on 304L SS weld performance

Plan to test hypothesis:

2.Calibrate a quality material
model to available base
material data.
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Investigating effects of laser weld geometry on 304L SS weld performance

Yield condition: Hardening behavior:
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2.Calibrate a quality material Temperature/rate dependent plasticity calibration
model to available base

Plan to test hypothesis:

0 250 500 750 1000
Temperature (K)

material data. ox10t 400
<6l 380}
ol —
; 5| QCS 360 O\Iordberg 2004)
% nx : | @340
o | —1.000e-03 (1/s) || &
n I
< 3 1.450e+00 (1/s)|| g2
3, 6.760e+01 (1/s)|| & 300
£ — 1.326e+02 (1/s)
: é 1 — simulations | 2801t . — simulations |
1.0 1 . experiments - _experiments
0001 02 03 04 05 06 07 08 ‘U7 10° 102 10 10 10t
Engineering Strain Strain Rate (1/s) I
051 MMPDS-10 ‘




Investigating effects of laser weld geometry on 304L SS weld performance

Plan to test hypothesis:

2.Calibrate a quality material

model to available base
material data.

Note: Material is 304L sheet,
not VAR 304L Bar

Material failure: void growth (Cocks and Ashby 1980)

~ : ~
2. 1-(1=¢)" . [22m—1)(p) 2.
=4/ Z€ sinh + (1 — v
b=zl I 22D B g
void nucleation ——» 1 =né, | N} i /i + Ng——+ o + N3 Ipl (Horstemeyer 1999, Nashon 2008)
P 27 T3 J32 of ’
Elements deleted when ¢ = 0.75
6000
5000 -~
4000 A
3000 -+
2000 -
1000 -
0 A L
(I) é 1IO 1I5 2l0

0.5 1.0

Displacement (mm) Displacement (mm)




Investigating effects of laser weld geometry on 304L SS weld performance

Plan to test hypothesis: Adjust Calibration to Predict gldbal behavior
$32 (@) : \
Specimen S32 Specimen S24 Specimen S25 Specimen S26 Specimen S33
(low porosity, (high porosity, (abnormal (medium porosity, (low porosity, deep
medium depth) shallow weld) geometry) deep weld) weld)

3.Run simulations where
geometry is the only variable
changed using base material
properties and determine if
models display similar trends
in mechanical behavior

variability.




Investigating effects of laser weld geometry on 304L SS weld performance i
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Laser weld porosity and geometry models
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Laser weld porosity and geometry models

Bottom view of porosity realization 12

Side view of porosity realization 12 % e

100
100 1
80 A
. 80 1
=
é 60
§ 60 1
40 1 O l
40 - |
20 A
20 A
0 |
—200 —100 0 100 200
Distance from Plane (pum) 0
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Distance from Face \



16
Conclusions and future work

1. Weld geometry is primary driver of structural performance
*  CT Scan parts to predict as-built behavior — need more load states

= Determine driver in variability — voids versus weld irregularity

2. Use porosity and geometry models developed from CT scans as RVE’s to determine behavior in realistic
loading scenarios

= At rate/temperature in different loading conditions.

Extract boundary conditions from locations Simulate the weld response with

realizations of fine scale model

— L

Re-run snnulatlons with updated coarse

of interest using initial coarse model

Calibrate coarse
scale model to fine
scale results

scale model. Iterate if time allows.
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Back up




Uncertainty due to segmentation process
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1.Still a work in progress - initial results
suggest approximately 10% error due
to uncertainty in segmentation proces
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Future work FY20:Validate new method against data from SAND2015-9012

Circular laser weld loaded in tension

Schematic of Plate with Circular
Partial Penetration Weld
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Portion of Weld with Up-sweep or Down-
sweep of Laser Power

Simulations of actual
CT scans possible.

Sealed volume in a quasi-static crush

Simulations of actual CT
scans seem possible.




Future work FY20:Validate new method against data from SAND2015-9012

Circular lIaser weld loaded in tension

Sealed volume in a quasi-static crush

scans and data processing.

All data available except for CT scans
of welds. Working to get funding for CT
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Conclusions
" When attempting to make accurate predictions,

small-scale geometry can really matter

= For highly ductile materials, the default element
is not both cheap and predictive/converged.

Choose one.
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"Coupled, advanced surrogates for multiscale
modeling may be an option for improved

coarse-scale model predictions.

"Good models require a lot of great data.




