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2 | High-Fidelity Simulations are crucial for Hypersonic Vehicle
analysis and design

HIFIRE-T / Run 30 Time = 49.910000

Fluid Temp [K]
2.367e+03

1.846e+03
1.326e+03
8.051e+02

2.844e+02

Solid Temp [K]

1.876e+03
1.469e+03
1.061e+03
6.539e+02
2.463e+02

*High-fidelity: extreme-scale, nonlinear dynamical system model.

* High cost: An unsteady multiphysics simulation can consume weeks on a supercomputet.

*Cost poses a “computational barrier” to the application of many-query and/or time-critical
problems:

* Many-Query: Design Optimization, Model Calibration, Uncertainty Propogation
* Time-Critical: Path Planning, Model Predictive Control, Health Monitoring
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3 I We use model reduction to break the computational barrier
by exploiting high-fidelity simulation data

1. Acquisition: Run high-fidelity simulation

at a few design points, save simulation data © . ® . ®
. s —_—
° . . -.\ g e
2. Learning: Use machine learning T e .

techniques to identify structure in the
high-fidelity simulation data

3. Reduction: Build a reduced order model

(ROM) with extracted data structures,
high-fidelity governing equations

‘D Design space
4.  Deployment: Use ROM at remaining O High-fidelity solution

design points * ROM solution

Model Reduction Criteria
. Accuracy: achieves less than 1% error

. Low cost: achieves at least 100x computational savings

. Structure preservation: preserves important physical properties

. Generalization: should work even in difficult cases and for many application codes
. Certification: accurately quantify the ROM error




4 I Previous work on model reduction for Hypersonic Vehicles

*No projection-based ROMs for hypersonic aerodynamics!

*[Dalle et al. 2010]: simplified aerodynamics and propulsion model for scramjet.

*[Falkiewicz and Cesnik 2011]: linear POD-Galerkin projection ROM for unsteady heat transfer
tinite-element model.

*[Falkiewicz et al. 2011]: Multi-physics Hypersonic vehicle ROM: coupled heat transter ROM to
piston-theory aerodynamics model, kriging surrogate for aerodynamic heat loads, and modal
response structural model.

*[Crowell and McNamara, 2012]: kriging-based surrogate model approaches for vehicle surface
pressures and temperatures.

*[Klock and Cesnik, 2017]: nonlinear POD-Galerkin projection ROM for unsteady heat transfer
finite-element model

POD-Galerkin ROMs are known to be ineffective for highly nonlinear systems.



5 ‘ Our research satisfies model reduction criteria for nonlinear

dynamical systems

Our model reduction research at Sandia
Accuracy

» LSPG projection: our baseline approach, has been applied to a compressible solver
[Catlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]

Low cost

» Sample mesh: use a fraction of the data for evalutaing nonlinear functions [Catlberg,
Farhat, Cortial, Amsallem, 2013]

» Space—time LSPG projection: learn and exploit structure in spatial and temporal
data |Catlberg, Ray, van Bloemen Waanders, 2015; Carlberg, Brencher,
Haasdonk, Barth, 2017; Choi and Carlberg, 2019]

Structure preservation

» Impose additional physical constraints (e.g. conservation) |Catlberg, Tuminaro, Boggs,
2015; Peng and Carlberg, 2017; Catlberg, Choi, Sargsyan, 2018]

Generalization

» Projection onto nonlinear manifolds: high capacity nonlinear approximation [Lee,
Carlberg, 2018]

» h-adaptivity: trade cost for accuracy [Catlberg, 2015; Etter and Catlberg, 2019]
» Pressio software: deploy methods for many application codes
Certification

» Machine learning error model: guantify reduced model uncertainties [Drohmann
and Carlberg, 2015; Trehan, Carlberg, Durlofsky, 2017; Freno and Catlberg,
2019; Pagani, Manzoni, Catlberg, 2019]

Model Reduction Criteria

. Accuracy: achieves less than 1% error

Low cost: achieves at least 100x
computational savings

Structure preservation: preserves important

physical properties

Generalization: should work even in difficult
cases and for many application codes
Certification: accurately quantify the ROM
error



Least Squares Petrov—Galerkin (LSPG) for unsteady systems
6 [Carlberg, Bou-Mosleh, Farhat, 201 |; Carlberg, Barone, Antil, 2017]

High-fidelity simulation = ODE: <X = (x; t, )

1. Acquisition time steps 3. Reduction

HERTY ﬁ d
i il A
— Choose ODE d—’; = f(x; t, p)
o Temporal -
{ ~— | B3 ' Discretization r(x ) =0, n=1.,T

Solve ODE at different

Variables

Number of State

design points Save solution data Reduce the
number of
2. Learning unknowns
Proper Orthogonal Decomposition
(POD): ]

minimize||
\'

u z v’ Minimize the
Residual




Least Squares Petrov—Galerkin (LSPG) for steady systems

7 [Carlberg, Bou-Mosleh, Farhat, 201 |; Carlberg, Barone, Antil, 2017]

*High-fidelity simulation = ODE: ¥(X; 1) = 0

1 . AchIS]t]On Number of snapshots, N 3. RedUCt]On
g x(p) = X(p) = D X(p)
3 g Reduce the l
% £ number of
§ = unknowns
Solve ODE at different exva splution date
design points Compute ~IG & C LG
. initial guess ) = Z — (1)
2. Learning for A(g) o B
x “ : L . .
Proper Orthogonal Decomposition ¢ = normalization constant
(POD): minimize| r(o U; u Mo | | !

Residual

u z v’ Minimize the I]:I:[I:I |




We do hyper-reduction with collocation

*Collocation: _
Sample Mesh: cells required

LSPG: miniAmize ||Ar((|)\AI; “)”% to compute residual

V'

Collocation ( (1) \
0

I:I I [I I choose columns E
of A from ;

identity matrix Kd} \0/ \

- O = OO

coroO---

/
*Collocation has been used in past studies of CFD model reduction [Washabaugh, 2016].

*We consider two sample mesh algorithms
1. Random sampling
2. Greedy algorithm [Washabaugh, 2016]
1. Determine reconstruction errot ‘y — (D(ACD)+ Ay|

2. Add cell with largest reconstruction error to A.

» Reconstruction error computed with state vectors, POD basis.




9 | Pressio, a minimally intrusive model reduction library

-Current ROMs require zntrusive implementations in large-scale codes

-The number of application codes is vast and constantly evolving

-Each newly developed ROM => a separate implementation in each application code

Pressio 1s a C++ header-only library:

+ Includes the cutting-edge ROM capabilities developed at Sandia

+ Minimally intrusive

+ Aims at easily providing scalable and performant ROMs to any Sandia applications
+ New ROMs can be coded only once and seamlessly applied to any application

+ Based on the C++11 standard/features

+ A simple, unigue intertace 1s required from the application to access a7y ROM

+ Can run ROMs on many/multi-core and GPUs



0 | Pressio partitions ROM methods and computational physics

application

2 i{mpl utils containers qr svd solvers odeJ
8 L
A :( rom

x = full-order model (fom) state x, 1 f,Jo

t=time e N

J= e full order model jacobian :

& = POD Basis ' Aeapter

+ Minimally intrusive
+ Unique interface

int main() lw,t Tf,ng

Application Core Code
. T = .f(wa i M)
z(0; ) = @o(p)

----------------------------------------------------------------------

Application Side




11 | Sandia Parallel Aerodyanmics and Reentry Code (SPARC)

*Compressible CFD code focused on aerodynamics and
aerothermodynamics in the Transonic and Hypersonic regimes

* Being developed to run on today’s leadership-class supercomputers
and Exascale machines.

* Performance portability: SPARC leverages Kokkos to run on
multiple machines with different architectures (e.g. CPU vs.
CPU/GPU)

*Physics Capabilities include:
* Navier—Stokes, cell-centered finite volume method

* Reynolds-Averaged Navier—Stokes (RANS) , cell-centered
finite volume method

* Transient Heat Equation, Galerkin finite element method.

* Decomposing and non-decomposing ablation equations, Galerkin
finite element method.

* One and two-way coupling between ablation, heat equation, RANS.

Time = 49.910000

Fluid Temp [K]
2.367e+03

1.846e+03
1.326e+03
8.051e+02

2.844e+02

Solid Temp [K]
1.876e+03

1.469e+03
1.061e+03
6.539e+02

2.463e+02

A slender body in hypersonic flow

simulated with SPARC



2 | Case |:The Blottner Sphere

~ 1.96+05 I: 2'6e+oo

— 150000 L4

Ma

100000

wall-heat-flux

50000

[ |
1.3e+04 8.96-03

*Flow field:
* Free stream Mach No. = 5.0
* Reynolds No. = 1.89 million

* Laminar flow (no turbulence

model)

*Spatial discretization:
* 20d_grder finite volume

* 524288 cells

Front

Side



13 I Unsteady reproductive ROM demonstrates cost savings
Time discretization: BDF2, time step=0.25us |

5.6e+00

Top view

[ (&)}

Side view
Sample mesh

(colored by Mach No.)

Ma

LSPG ROM: LSPG ROM High-fidelity 190105

« Sample mesh: 3200 cells, :
16,000 dofs (more on next slide) 150000 |

1 MPI rank, ~6 seconds

heat-flux

100000

walll

High-fidelity: 50000
« 524288 cells => 2,621,440 DoFs

* 32 MPI ranks, ~62 seconds

1.3e+04

320x savings in core-hours

Reproduced flow field with negligible error




14 | LSPG is accurate for reproductive and predictive steady cases

— 1.1e+05
— 100000

[5.0e+00
N

-~ 80000
. -3
60000
| 2

[ |
8.9e-03

LSPG ROM Predictive Solution, Mach 5.0

*Full Order Model: Blottner Sphere solved with backward
Euler pseudo time-stepping, CFL schedule.

wall-heat-flux

40000

20000
8.2e+03

*Training set: Mach Numbers [4.5,4.7,4.9,5.1,5.3,5.5]
*Test set: Mach Numbers [4.6,4.8,5.0,5.2,5.4]
*POD basis:

* columns scaled to be unitary.

* each conserved quantity scaled by its maximum over all
FOM solutions.

*ROM: LSPG solved with Gauss-Newton iteration

Ma

Relative State Error

10—1_
10-3 1 ,-f-.’"".'
Predictive error <1%
1051
, —-— FOM Projection

1074 —— ROM
—— |nitial Guess
-== 1% error

10—9_

10—11_

Reproductive error near
1013l . machine zero
10—15

4.6 4.8 5.0 5.2 5.4
Mach Number

Relative State Error =



15 ‘ LSPG is still accurate with sample mesh, but greedy algorithm
performs poorly relative to random sample mesh

Relative State Error

Random Samples

10°

10_4 v T T T T
4.6 4.8 5.0 5.2 54
Mach Number

——- FOM Projection

—— ROM

—=— |nitial Guess
-== 1% error

—e— 1.15 % of mesh
—e— 2.30 % of mesh
—e— 4.60 % of mesh
—e— 11.50 % of mesh
—e— 23.00 % of mesh

Relative State Error =

Relative State Error

Greedy Algorithm

10°

1074

4.6 4.8 5.0 5.2 5.4
Mach Number

Ix — X]l2

]|

——- FOM Projection
—— ROM

—— |nitial Guess
--- 1% error

—o— 2.30 % of mesh
—e— 4.60 % of mesh
—e— 11.50 % of mesh
—e— 23.00 % of mesh




16 | Case 2:Axis-symetric HIFiRE flight vehicle

*Flow field:
* Free stream Mach No. = 7.19
* Reynolds No. = 41.9 million

* Boundary layer transitions to
turbulence (use Spalart-
Allmaras with specified
transition location)

. . o 7.56+00
*Spatial discretization: gzt [
: 6
» 2nd_order finite volume p " N

* 32768 cells

Numerous flow features with range of length scales



17 I LSPG is accurate for HiFIRE predictive cases

*Full Order Model: 2D HIFiRE solved with backward
Euler pseudo time-stepping, CFL schedule.

*Training set: Mach Numbers [6.47, 6.76, 7.04, 7.34,
7.62,7.91]

*Test set: Mach Numbers [6.59, 6.89, 7.19, 7.49, 7.79]
*POD basis:

* columns scaled to be unitary.

* each conserved quantity scaled by its maximum over all
FOM solutions.

*ROM: L.SPG solved with Gauss-Newton iteration

Relative State Error

1004
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10_2E

10_3?
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™

T ¢ — — — —
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Mach Number

6.6 6.8 7.0

Relative State Error =



18

Relative State Error

Random hyper-reduction works for HIFiRE predictive cases

—-— FOM Projection

—— ROM

—<— |nitial Guess
Random Samples e
—e— 6.50 % of mesh
—o— 9.10 % of mesh

10°

10"1?

—e— 13.00 % of mesh
—e— 19.50 % of mesh
—e— 26.00 % of mesh
—e— 39.00 % of mesh
—e— 65.00 % of mesh

Relative State Errc

1074

6.6 6.8 7.0 7.'2 7.4 7.6 7.8
Mach Number

Relative State Error =

Greedy Algorithm

—-— FOM Projection
—— ROM
—<— Initial Guess

-—= 1% error

—e— 13.00 % of mesh
—eo— 26.00 % of mesh
—e— 39.00 % of mesh
65.00 % of mesh

1005
.0_1';
10—2_5 ————————————————
10_3? ...........
10~4 T . |

6.6 6.8 7.0

Mach

_x=x]

1|2

7.2 7.4 7.6 7.8
Number



19 I Conclusions

*High-fidelity simulations are crucial, but expensive for hypersonic vehicles

*Model reduction of hypersonic tlows with LSPG shows promise:

» Preliminary results for the Blottner sphere and HIFiRE cases show low cost and accuracy of
LSPG.

» Hyper-reduction works, but the greedy algorithm results in lower accuracy than
randomly selecting cells.

B



20 | Future Work

HIFIRE-1 / Run 30

*Sample mesh algorithms and implementation for steady
problems

*Consider larger parameter variations and multiple parameters

*New cases
» 3D HIFiRE geometry with asymmetric flow.

» Double cone with non-equilibrium chemistry.
» Thermal and Ablation model ROMs

*Different ROM methods

»1.SPG with conservation constraint
» Manifold-LLSPG approach

- NWLasaONnyo O
B e

|

*Goal: apply ROM to physically relevant parameter space,
such as a range of flight conditions

Double cone Mach contours
courtesy J. Ray, Sandia



21 | Relevant Publications

[1] K. Carlberg, C. Bou-Mosleh, and C. Farhat. “Efficient non-linear model reduction via a least-
squares Petrov—Galerkin projection and compressive tensor approximations,” International Journal

for Numerical Methods in Engineering, Vol. 86, No. 2, p. 155-181 (2011).

2] K. Carlberg, Y. Chot, and S. Sargsyan. "Conservative model reduction for finite-volume models,"

Journal of Computational Physics, Vol. 371, p. 280-314 (2018).

[3] K. Carlberg, C. Farhat, J. Cortial, and D. Amsallam. “The GNAT method for nonlinear model
reduction: Effective implementation and application to computational fluid dynamics and turbulent
flows,” Journal of Computational Physics, Vol. 242, p. 623—-647 (2013).

[4] K. Carlberg, M. Barone, and H. Antil. “Galerkin v. least-squares Petrov—Galerkin projection in
nonlinear model reduction,” Journal of Computational Physics, Vol. 330, p. 693—734 (2017).

[5] K. M. Washabaugh, "Fast Fidelity for Better Design: A Scalable Model Order Reduction

Framework for Steady Aerodynamic Design Applications”, PhD Thesis, Department of Aeronautics

and Astronautics, Stanford University, August 2016.

Upcoming: a paper on Pressio

B



22

Backup Slides




=
=

23 ‘ Greedy Algorithm [Washabaugh, 2016]

Algorithm 4 Selection of the masks.
Input: Desired number of sampled nodes ngy, and the ROB for the nonlinear terms, ¥ =

[¢1* . 6.8 ’wk] € RnXk
Outputs: &, &’

1: Find £ = nodeWithMax (|v,])

2: Identify the degrees of freedom {e(¢ ipor) imen , associated with node £
3: Set £ = {e(e,1),7 "+ s €(¢mpor) }

4: NMpodesToAdd = ceil (ngn/k)

5 for tye. =2+ ,kdo

6:  Set U= [y, ;1]

T for tnode = 1, *** s NpodesToAdd CE) L

8: Compute masked quantities Eim and U corresponding to &£

— —+—

9: Compute gappy reconstruction ¢, = UU 1,
10:  Find ¢ = nodeWithMax (|v;,_ — %, _|)
11 E—-EU {6(6,1), s ,G(g,nDOF)}
12: end for
13: end for

14: Identify &', the degrees of freedom necessary to evaluate the residual and Jacobian at £.




