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2 I High-Fidelity Simulations are crucial for Hypersonic Vehicle
analysis and design
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•High-fidelity: extreme-scale, nonlinear dynamical system model.
• High cost: An unsteady multiphysics simulation can consume weeks on a supercomputer.

•Cost poses a "computational barrier" to the application of many-query and/or time-critical
problems:
• Many-Query: Design Optimization, Model Calibration, Uncertainty Propogation

• Time-Critical: Path Planning, Model Predictive Control, Health A/ onitoring



3 I We use model reduction to break the computational barrier
by exploiting high-fidelity simulation data

1. Acquisition: Run high-fidelity simulation
at a few design points, save simulation data

2. Learning: Use machine learning
techniques to identify structure in the
high-fidelity simulation data

3. Reduction: Build a reduced order model
(ROM) with extracted data structures,
high-fidelity governing equations

4. Deployment: Use ROM at remaining
design points
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Model Reduction Criteria
1. Accuracy: achieves less than 1% error
2. Low cost: achieves at least 100x computational savings
3. Structure preservation: preserves important physical properties
4. Generalization: should work even in difficult cases and for many application codes
5. Certification: accurately quantify the ROM error



4  Previous work on model reduction for Hypersonic Vehicles

•No projection-based ROMs for hypersonic aerodynamics!

•[l)alle et al. 2010]: simplified aerodynamics and propulsion model for scramjet.

•[Falkiewicz and Cesnik 2011]: linear POD-Galerkin projection ROM for unsteady heat transfer
finite-element model.

•[Falkiewicz et al. 2014 Multi-physics Hypersonic vehicle ROM: coupled heat transfer ROM to
piston-theory aerodynamics model, kriging surrogate for aerodynamic heat loads, and modal
response structural model.

•[Crowell and McNamara, 2014 kriging-based surrogate model approaches for vehicle surface
pressures and temperatures.

•[Klock and Cesnik, 2017]: nonlinear POD-Galerkin projection ROM for unsteady heat transfer
finite-element model

POD-Galerkin ROMs are known to be ineffective for highly nonlinear systems.



5 Our research satisfies model reduction criteria for nonlinear
dynamical systems

Our model reduction research at Sandia
• Accuracy

➢ LSPG projection: our baseline approach, has been applied to a compressible solver
[Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]

• Low cost

➢ Sample mesh: use a fraction of the data for evalutaing nonlinear functions [Carlberg,
Farhat, Cortial, Amsallem, 2013]

➢ Space—time LSPG projection: learn and exploit structure in spatial and temporal
data [Carlberg, Ray, van Bloemen Waanders, 2015; Carlberg, Brencher,
Haasdonk, Barth, 2017; Choi and Carlberg, 2019]

• Structure preserva tion

➢ Impose additional physical constraints (e.g. conservation) [Carlberg, Tuminaro, Boggs,
2015; Peng and Carlberg, 2017; Carlberg, Choi, Sargsyan, 2018]

• Generalization

➢ Projection onto nonlinear manifolds: high capaci0 nonlinear approximation [Lee,
Carlberg, 2018]

➢ h-adaptivity: trade cost for accuracy [Carlberg, 2015; Etter and Carlberg, 2019]

➢ Pressio software: deploy methods for many application codes

• Certification

➢ Machine learning error model: quantift reduced model uncertainties [Drohmann
and Carlberg, 2015; Trehan, Carlberg, Durlofsky, 2017; Freno and Carlberg,
2019; Pagani, Manzoni, Carlberg, 2019]

Model Reduction Criteria
1. Accuracy: achieves less than 1% error
2. Low cost: achieves at least 100x

computational savings
3. Structure preservation: preserves important

physical properties
4. Generalization: should work even in difficult

cases and for many application codes
5. Certification: accurately quantify the ROM

error



Least Squares Petrov—Galerkin (LSPG) for unsteady systems
6 [Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]
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Least Squares Petrov—Galerkin (LSPG) for steady systems
7 [Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]
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8 I We do hyper-reduction with collocation

°Collocation:

LSPG: minimize Ar(41:0ii,l-t)fl

A
Collocation

choose columns
of A from

identity matrix

Sample Mesh: cells required
to compute residual

•Collocation has been used in past studies of CFD model reduction [Washabaugh, 2016].

•We consider two sample mesh algorithms
1. Random sampling

2. Greedy algorithm [Washabaugh, 2016]
1. Determine reconstruction error y — ( A (1) )+ Ay
2. Add cell with largest reconstruction error to A.

➢Reconstruction error computed with state vectors, POD basis.



9 k Pressio, a minimally intrusive model reduction library

-Current ROMs require intrusive implementations in large-scale codes

-The number of application codes is vast and constantly evolving

-Each newly developed ROM => a separate implementation in each application code

Pressio is a C++ header-only library:

+ Includes the cutting-edge ROM capabilities developed at Sandia

+ Minimally intrusive

+ Aims at easily providing scalable and performant ROMs to any Sandia applications

+ New RO s can be coded only once and seamlessly applied to any application

+ Based on the C++11 standard/features

+ A simple, unique interface is required from the application to access any ROM

+ Can run ROMs on many/multi-core and GPUs



10 I Pressio partitions ROM methods and computational physics
application

x = full-order model (fom) state
t = time

a f
J = — = full order model jacobian

ax
0 = POD Basis

+ Minimally intrusive
+ Unique interface
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11  Sandia Parallel Aerodyanmics and Reentry Code (SPARC)

•Compressible CFD code focused on aerodynamics and
aerothermodynamics in the Transonic and Hypersonic regimes
• Being developed to run on today's leadership-class supercomputers
and Exascale machines.

• Performance portability: SPARC leverages Kokkos to run on
multiple machines with different architectures (e.g. CPU vs.
CPU/GPU)

•Physics Capabilities include:
• Navier—Stokes, cell-centered finite volume method

• Reynolds-Averaged Navier—Stokes (RANS) , cell-centered
finite volume method

• Transient Heat Equation, Galerkin finite element method.

• Decomposing and non-decomposing ablation equations, Galerkin
finite element method.

• One and two-way coupling between ablation, heat equation, RANS.

Time = 49.910000
Fluid Temp [K]
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A slender body in hypersonic flow
simulated with SPARC



1 2 I Case I:The Blottner Sphere
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°Flow field:
• Free stream Mach No. = 5.0

• Reynolds No. = 1.89 million

• Laminar flow (no turbulence
model)

•Spatial discretization:
• 2nd-order finite volume

• 524288 cells
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13  Unsteady reproductive ROM demonstrates cost savings
Time discretization: BDF2, time step=0.25ps

Sample mesh
(colored by Mach No.)

LSPG ROM:
• Sample mesh: 3200 cells,

16,000 dofs (more on next slide) ,
• 1 MPI rank, -6 seconds ,x

High-fidelity:
• 524288 cells => 2,621,440 DoFs
• 32 MPI ranks, -62 seconds

LSPG ROM
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14 I LSPG is accurate for reproductive and predictive steady cases
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LSPG ROM Predictive Solution, Mach 5.0

*Full Order Model: Blottner Sphere solved with backward
Euler pseudo time-stepping, CFL schedule.

•Training set: Mach Numbers [4.5,4.7,4.9,5.1,5.3,5.5]

•Test set: Mach Numbers [4.6,4.8,5.0,5.2,5.4]

•POD basis:

• columns scaled to be unitary.

• each conserved quantity scaled by its maximum over all
FON: solutions.

•ROM: LSPG solved with Gauss-Newton iteration
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1 5 I LSPG is still accurate with sample mesh, but greedy algorithm
performs poorly relative to random sample mesh
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16 I Case 2:Axis-symetric HIFiRE flight vehicle

•Flow field:
• Free stream Mach No. = 7.19

• Reynolds No. = 41.9 million

• Boundary layer transitions to
turbulence (use Spalart-
Allmaras with specified
transition location)

•Spatial discretization:
• 2nd-order finite volume

• 32768 cells

Numerous flow features with range of length scales Ir 10.0e+00



17 I LSPG is accurate for HiFIRE predictive cases

*Full Order Model: 2D HIFiRE solved with backward
Euler pseudo time-stepping, CFL schedule.

•Training set: Mach Numbers [6.47, 6.76, 7.04, 7.34,
7.62, 7.91]

•Test set: Mach Numbers [6.59, 6.89, 7.19, 7.49, 7.79]

•POD basis:

• columns scaled to be unitary.

• each conserved quantity scaled by its maximum over all
FOM solutions.

•ROM: LSPG solved with Gauss-Newton iteration
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18 I Random hyper-reduction works for HIFiRE predictive cases
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19 I Conclusions

•High-fidelity simulations are crucial, but expensive for hypersonic vehicles

•Model reduction of hypersonic flows with LSPG shows promise:
>Preliminary results for the Blottner sphere and HIFiRE cases show low cost and accuracy of
LSPG.

>Hyper-reduction works, but the greedy algorithm results in lower accuracy than
randomly selecting cells.



20 I Future Work

•Sample mesh algorithms and implementation for steady
problems

•Consider larger parameter variations and multiple parameters

•New cases
> 3D HIFiRE geometry with asymmetric flow.

➢Double cone with non-equilibrium chemistry.
➢Thermal and Ablation model ROMs

•Different ROM methods

➢LSPG with conservation constraint
➢Manifold-LSPG approach

•Goal: apply ROM to physically relevant parameter space,
such as a range of flight conditions

HIRRE-1 / Run 30

Double cone Mach contours
courtesy J. Ray, Sandia
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23 Greedy Algorithm [Washabaugh, 20 I 6]

Algorithm 4 Selection of the masks.
Input: Desired number of sampled nodes nsN,

,Ipk] c Rnxk

Outputs: E, E'

1: Find e = nodeWithMax ( 101 )
2: Identify the degrees of freedom fe(C iDOF inDDOC FF.= 1 

associated with node e
3: Set E = fe(t • • e(t,1tD0F)}
4: nnodesToAdd = ceil (rtsN 1 k)
5: for ivec = 2, • • • , k do
6: Set U = [011' • Oive, —1]

7: for inode = 1, • • /nnodesToAdd

and the ROB for the nonlinear terms, %If

8: Compute masked quantities Oivec and U corresponding to E

9: Compute gappy reconstruction VI;-vec UU //.);• .vec
10: Find e = nodeWithMax ( kb; . • -vec — ~'ZvecI)
11: E E U le (0), • • • , er

‘4.,91DOF )

12: end for
13: end for
14: Identify E' , the degrees of freedom necessary to evaluate the residual and Jacobian at E .


