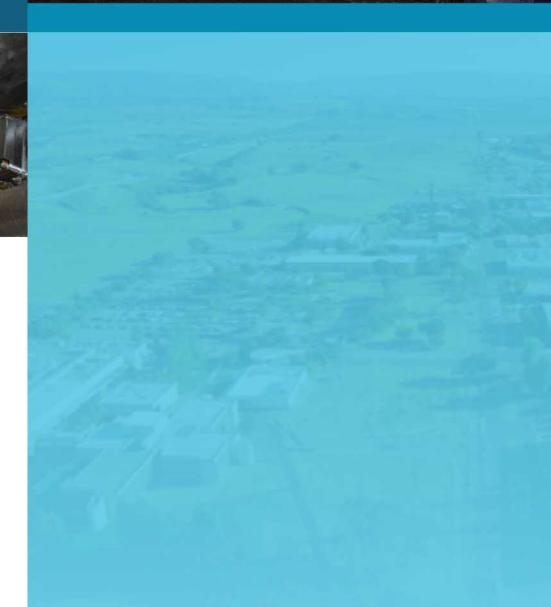


Sandia
National
Laboratories

SAND2019-8813C

Least-Squares Petrov--Galerkin Reduced-Order Models for Hypersonic Flight Vehicles



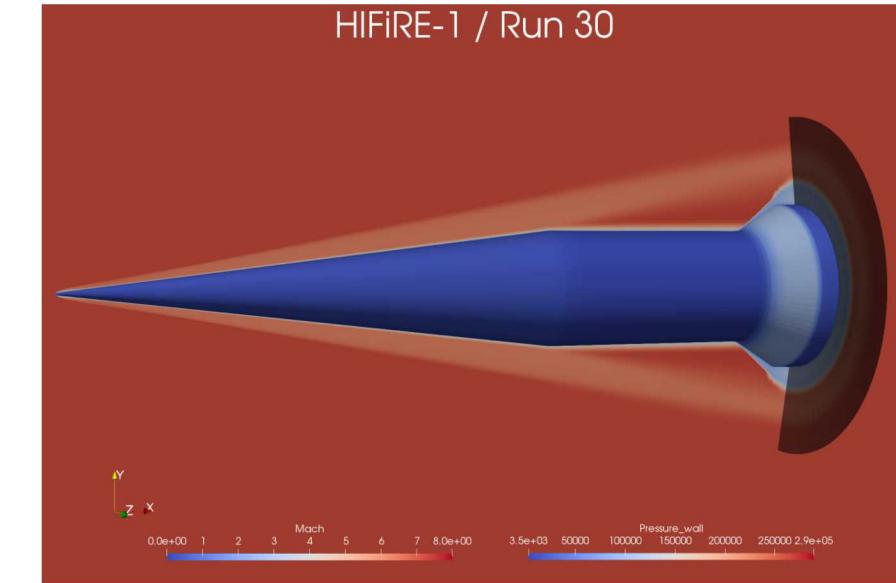
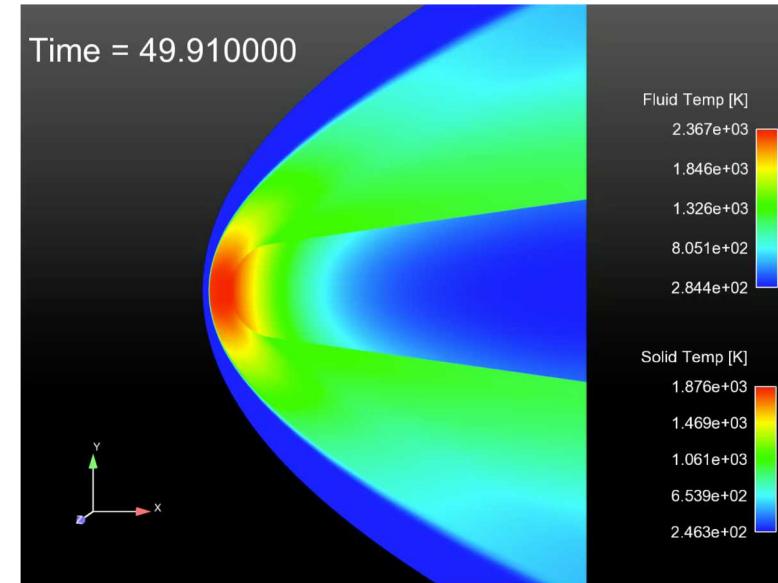
PRESENTED BY

Patrick Blonigan

Collaborators: Francesco Rizzi, Micah Howard, Jeff Fike,
and Kevin Carlberg

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

High-Fidelity Simulations are crucial for Hypersonic Vehicle analysis and design

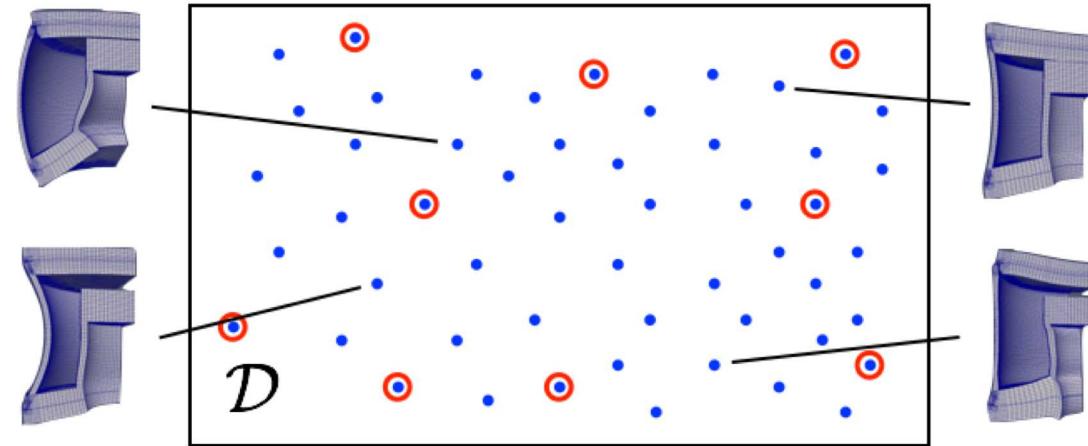


- High-fidelity: extreme-scale, nonlinear dynamical system model.
 - High cost: An unsteady multiphysics simulation can consume **weeks** on a supercomputer.
- Cost poses a “**computational barrier**” to the application of many-query and/or time-critical problems:
 - **Many-Query:** Design Optimization, Model Calibration, Uncertainty Propogation
 - **Time-Critical:** Path Planning, Model Predictive Control, Health Monitoring

3

We use model reduction to break the computational barrier by exploiting high-fidelity simulation data

1. **Acquisition:** Run high-fidelity simulation at a few design points, save simulation data
2. **Learning:** Use machine learning techniques to identify structure in the high-fidelity simulation data
3. **Reduction:** Build a reduced order model (ROM) with extracted data structures, high-fidelity governing equations
4. **Deployment:** Use ROM at remaining design points



\mathcal{D} Design space
○ High-fidelity solution
• ROM solution

Model Reduction Criteria

1. **Accuracy:** achieves less than 1% error
2. **Low cost:** achieves at least 100x computational savings
3. **Structure preservation:** preserves important physical properties
4. **Generalization:** should work even in difficult cases and for many application codes
5. **Certification:** accurately quantify the ROM error

Previous work on model reduction for Hypersonic Vehicles

- No projection-based ROMs for hypersonic aerodynamics!
- [Dalle et al. 2010]: simplified aerodynamics and propulsion model for scramjet.
- [Falkiewicz and Cesnik 2011]: linear POD-Galerkin projection ROM for unsteady heat transfer finite-element model.
- [Falkiewicz et al. 2011]: Multi-physics Hypersonic vehicle ROM: coupled heat transfer ROM to piston-theory aerodynamics model, kriging surrogate for aerodynamic heat loads, and modal response structural model.
- [Crowell and McNamara, 2012]: kriging-based surrogate model approaches for vehicle surface pressures and temperatures.
- [Klock and Cesnik, 2017]: nonlinear POD-Galerkin projection ROM for unsteady heat transfer finite-element model

POD-Galerkin ROMs are known to be ineffective for highly nonlinear systems.

Our research satisfies model reduction criteria for nonlinear dynamical systems

Our model reduction research at Sandia

• *Accuracy*

- LSPG projection: *our baseline approach, has been applied to a compressible solver* [Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]

• *Low cost*

- Sample mesh: *use a fraction of the data for evaluating nonlinear functions* [Carlberg, Farhat, Cortial, Amsallem, 2013]
- Space-time LSPG projection: *learn and exploit structure in spatial and temporal data* [Carlberg, Ray, van Bloemen Waanders, 2015; Carlberg, Bresner, Haasdonk, Barth, 2017; Choi and Carlberg, 2019]

• *Structure preservation*

- *Impose additional physical constraints (e.g. conservation)* [Carlberg, Tuminaro, Boggs, 2015; Peng and Carlberg, 2017; Carlberg, Choi, Sargsyan, 2018]

• *Generalization*

- Projection onto nonlinear manifolds: *high capacity nonlinear approximation* [Lee, Carlberg, 2018]
- *h*-adaptivity: *trade cost for accuracy* [Carlberg, 2015; Etter and Carlberg, 2019]
- Pressio software: *deploy methods for many application codes*

• *Certification*

- Machine learning error model: *quantify reduced model uncertainties* [Drohmann and Carlberg, 2015; Trehan, Carlberg, Durlofsky, 2017; Freno and Carlberg, 2019; Pagani, Manzoni, Carlberg, 2019]

Model Reduction Criteria

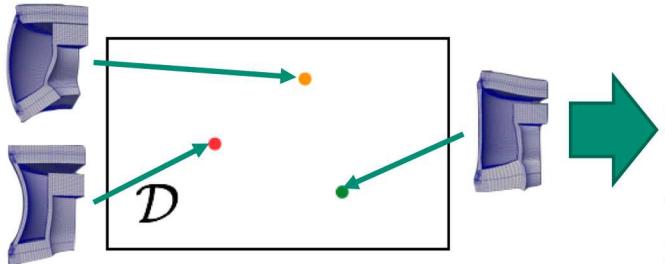
1. ***Accuracy***: achieves less than 1% error
2. ***Low cost***: achieves at least 100x computational savings
3. ***Structure preservation***: preserves important physical properties
4. ***Generalization***: should work even in difficult cases and for many application codes
5. ***Certification***: accurately quantify the ROM error

Least Squares Petrov—Galerkin (LSPG) for unsteady systems

[Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]

- High-fidelity simulation = ODE: $\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \mu)$

1. Acquisition



Solve ODE at different design points

2. Learning

Proper Orthogonal Decomposition (POD):

$$\mathbf{X} = \begin{array}{c|c|c} \text{Red} & \text{Orange} & \text{Green} \end{array} = \begin{array}{c|c} \text{Brown} & \text{Blue} \end{array} \mathbf{U} \quad \Sigma \quad \mathbf{V}^T$$

3. Reduction

Choose ODE
Temporal
Discretization

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \mu)$$

\downarrow

$$\mathbf{r}^n(\mathbf{x}^n; \mu) = \mathbf{0}, \quad n = 1, \dots, T$$

Reduce the
number of
unknowns

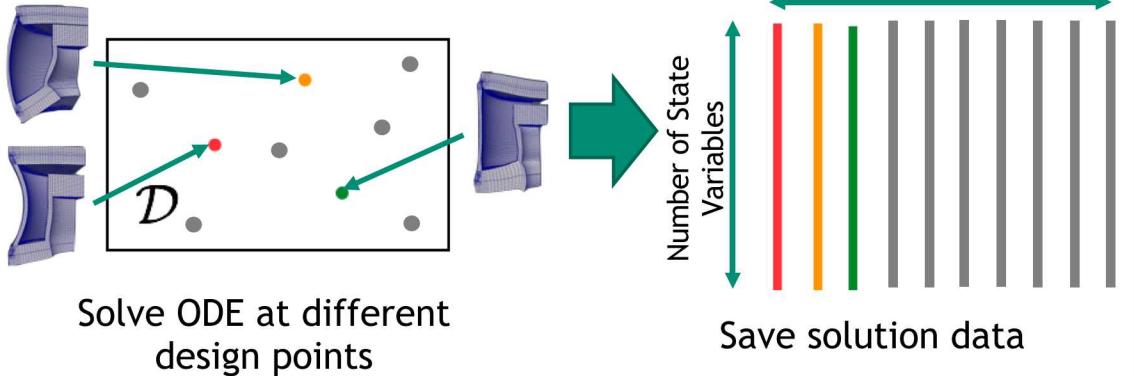
$$\mathbf{x}(t) \approx \tilde{\mathbf{x}}(t) = \Phi \hat{\mathbf{x}}(t)$$

Minimize the
Residual

$$\underset{\hat{\mathbf{v}}}{\text{minimize}} \quad \|\mathbf{A} \hat{\mathbf{v}} - \mathbf{r}^n(\Phi \hat{\mathbf{v}}; \mu)\|_2$$

- High-fidelity simulation = ODE: $\mathbf{r}(\mathbf{x}; \boldsymbol{\mu}) = 0$

1. Acquisition



2. Learning

Proper Orthogonal Decomposition

$$\mathbf{X} = \mathbf{\Phi} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

(POD):

3. Reduction

Reduce the number of unknowns

$$\mathbf{x}(\mu) \approx \tilde{\mathbf{x}}(\mu) = \Phi \hat{\mathbf{x}}(\mu)$$

Compute
initial guess
for $\hat{x}(\mu)$:

$$\hat{\mathbf{x}}^{IG}(\mu) = \sum_{i=0}^N \frac{c}{\mu - \mu_i} \hat{\mathbf{x}}^{IG}(\mu_i),$$

c = normalization constant

Minimize the Residual

$$\underset{\hat{v}}{\text{minimize}} \parallel \mathbf{A} \mathbf{r}(\Phi \hat{v}; \mu) \parallel_2$$

We do hyper-reduction with collocation

- Collocation:

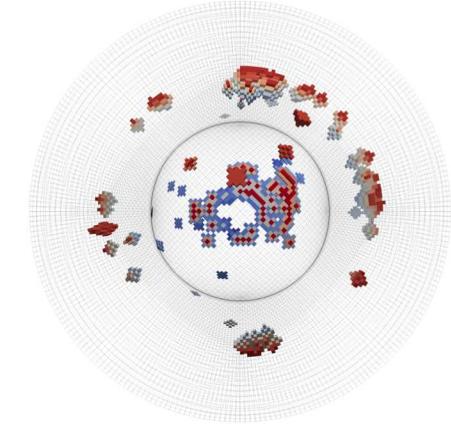
LSPG: $\underset{\hat{\mathbf{v}}}{\text{minimize}} \|\mathbf{Ar}(\Phi \hat{\mathbf{v}}; \mu)\|_2^2$

$$\mathbf{A} = \begin{array}{|c|c|c|c|} \hline & & & \\ \hline \end{array}$$

Collocation
= choose columns of \mathbf{A} from identity matrix

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

Sample Mesh: cells required to compute residual



- Collocation has been used in past studies of CFD model reduction [Washabaugh, 2016].
- We consider two sample mesh algorithms
 1. Random sampling
 2. Greedy algorithm [Washabaugh, 2016]
 1. Determine reconstruction error $|\mathbf{y} - \Phi(\mathbf{A}\Phi)^+ \mathbf{A}\mathbf{y}|$
 2. Add cell with largest reconstruction error to \mathbf{A} .
- Reconstruction error computed with state vectors, POD basis.

Pressio, a minimally intrusive model reduction library

- Current ROMs require *intrusive* implementations in large-scale codes
- The number of application codes is vast and constantly evolving
- Each newly developed ROM => a separate implementation in each application code

Pressio is a C++ header-only library:

- + Includes the cutting-edge ROM capabilities developed at Sandia
- + Minimally intrusive
- + Aims at easily providing scalable and performant ROMs to any Sandia applications
- + New ROMs can be coded only once and seamlessly applied to any application
- + Based on the C++11 standard/features
- + A *simple, unique* interface is required from the application to access *any* ROM
- + Can run ROMs on many/multi-core and GPUs

Pressio partitions ROM methods and computational physics application

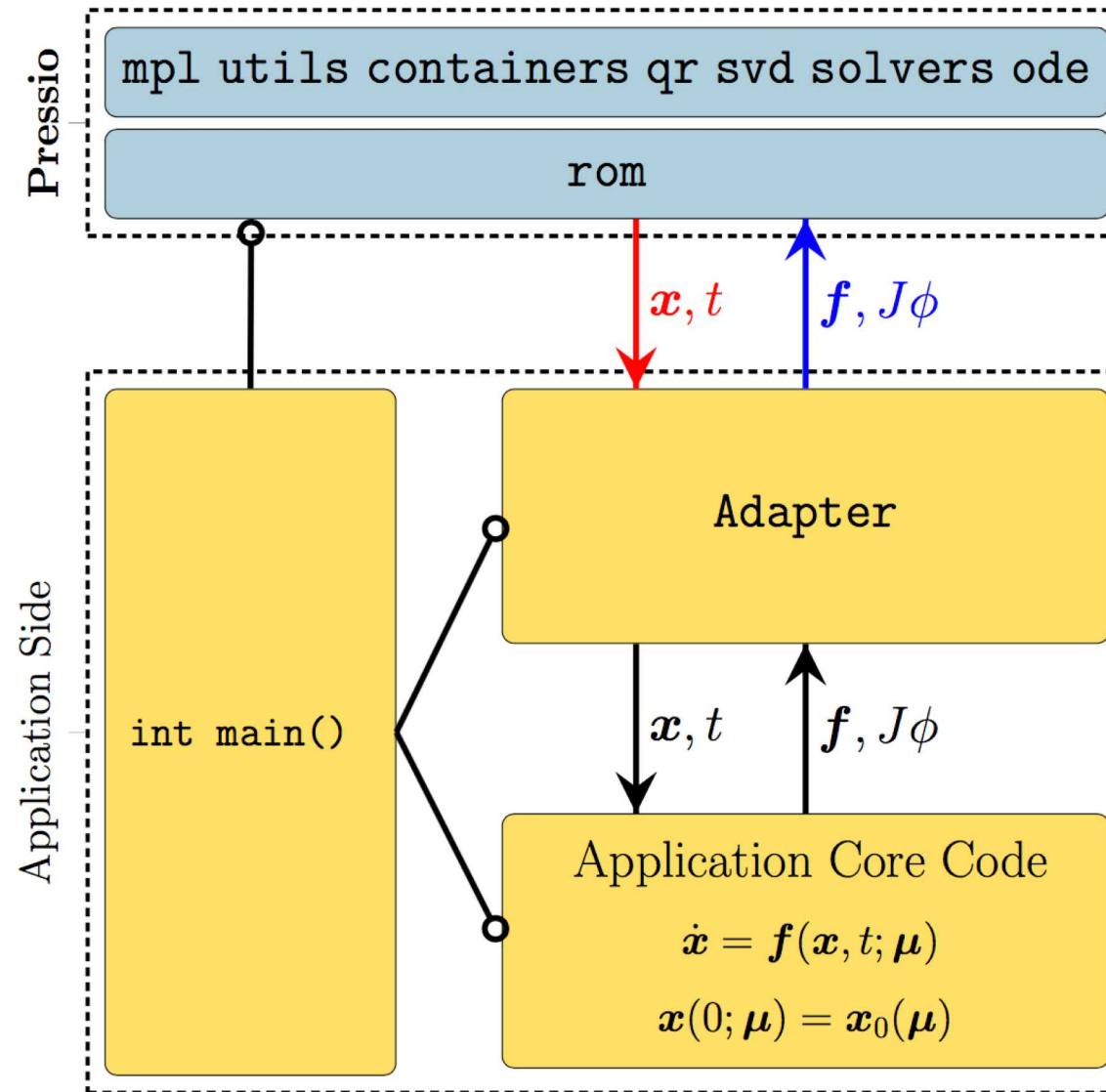
x = full-order model (fom) state

t = time

$J = \frac{\partial f}{\partial x}$ = full order model jacobian

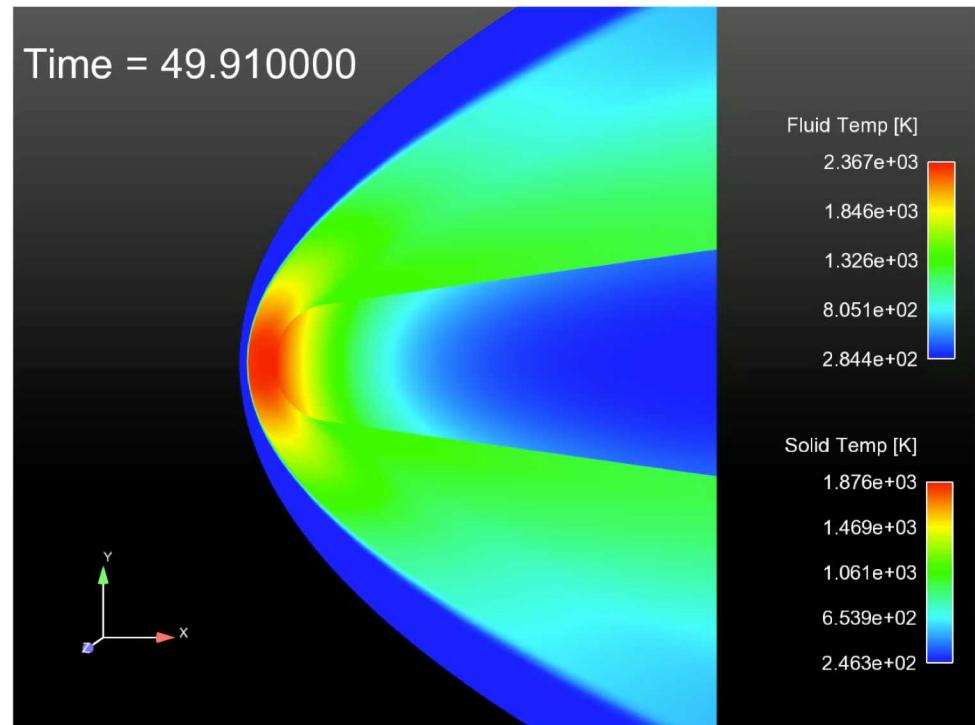
Φ = POD Basis

- + Minimally intrusive
- + Unique interface



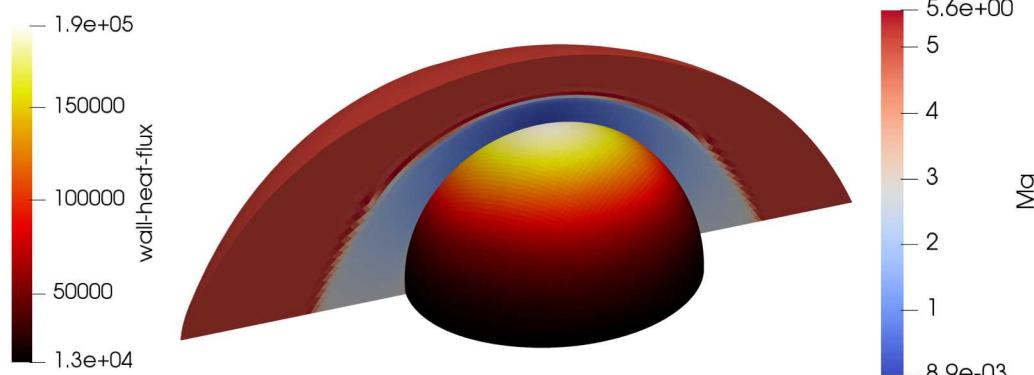
Sandia Parallel Aerodynamics and Reentry Code (SPARC)

- Compressible CFD code focused on aerodynamics and aerothermodynamics in the Transonic and Hypersonic regimes
 - Being developed to run on today's leadership-class supercomputers and Exascale machines.
 - Performance portability: SPARC leverages Kokkos to run on multiple machines with different architectures (e.g. CPU vs. CPU/GPU)
- Physics Capabilities include:
 - **Navier—Stokes, cell-centered finite volume method**
 - **Reynolds-Averaged Navier—Stokes (RANS) , cell-centered finite volume method**
 - Transient Heat Equation, Galerkin finite element method.
 - Decomposing and non-decomposing ablation equations, Galerkin finite element method.
 - One and two-way coupling between ablation, heat equation, RANS.

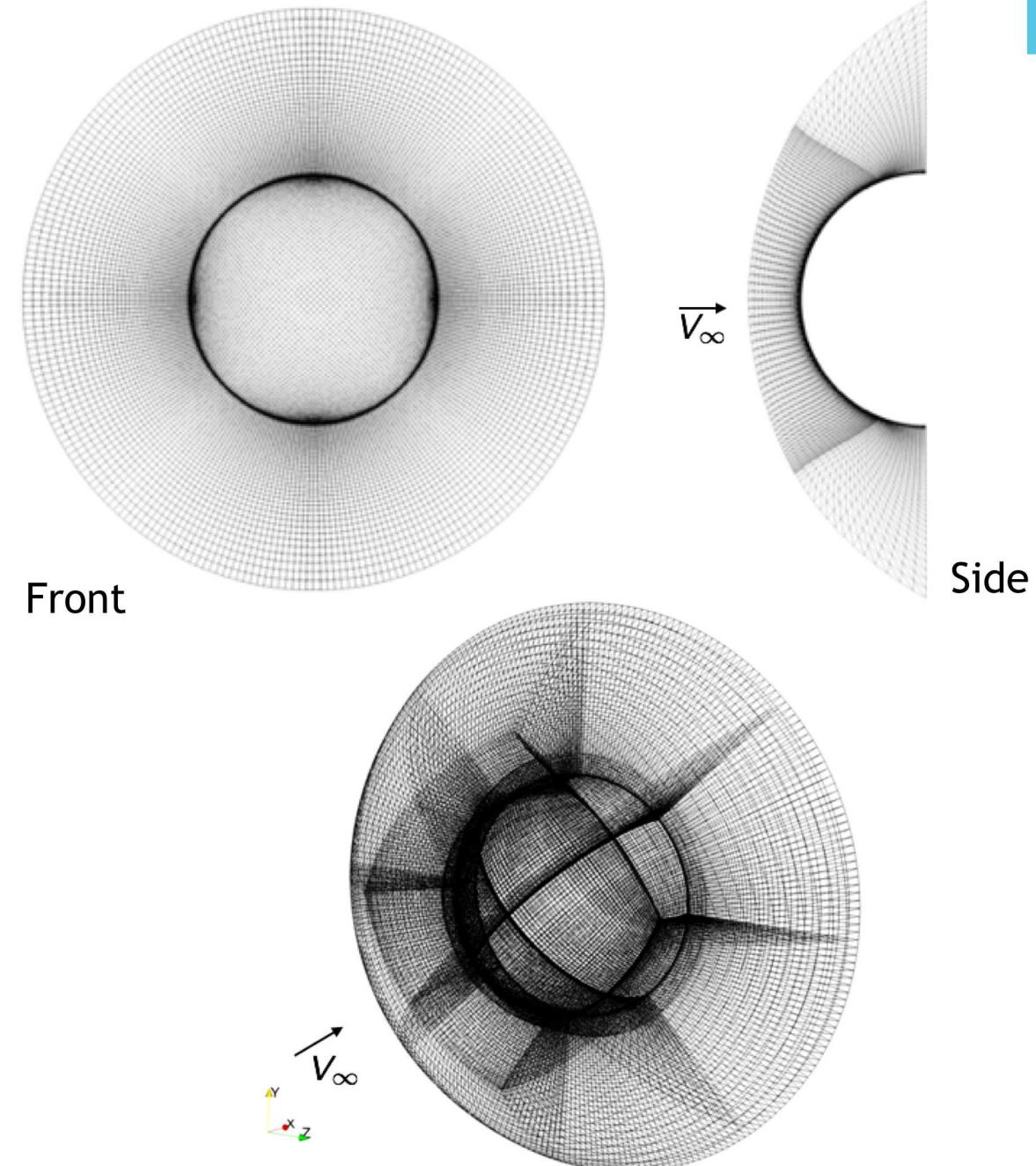


A slender body in hypersonic flow simulated with SPARC

Case I: The Blottner Sphere



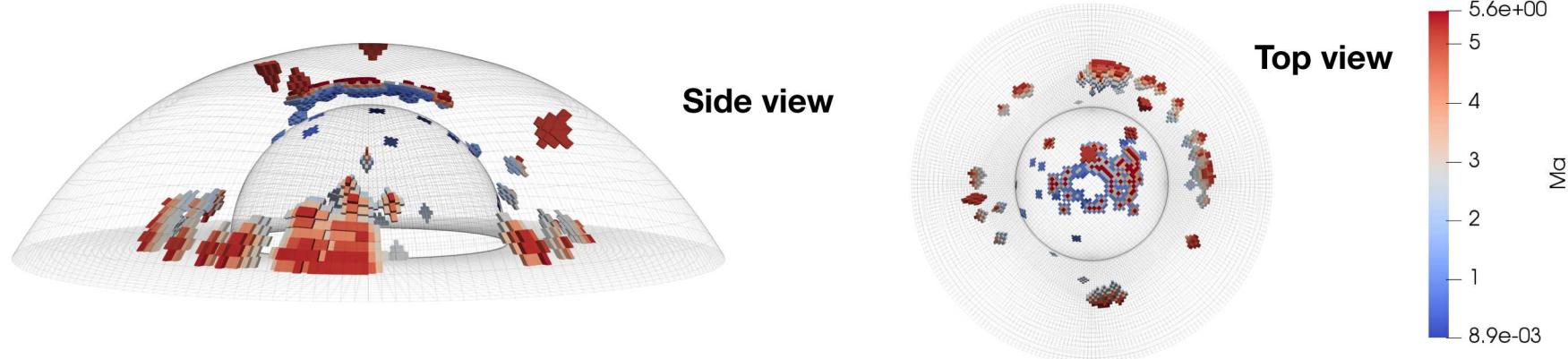
- Flow field:
 - Free stream Mach No. = 5.0
 - Reynolds No. = 1.89 million
 - Laminar flow (no turbulence model)
- Spatial discretization:
 - 2nd-order finite volume
 - 524288 cells



Unsteady reproductive ROM demonstrates cost savings

Time discretization: BDF2, time step=0.25 μ s

Sample mesh
(colored by Mach No.)

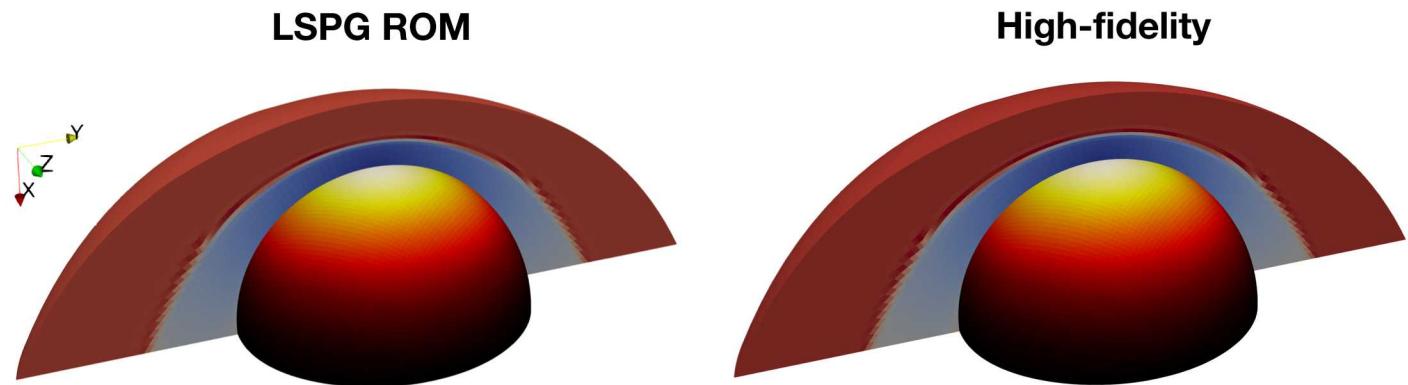


LSPG ROM:

- Sample mesh: 3200 cells,
16,000 dofs (more on next slide)
- 1 MPI rank, ~6 seconds

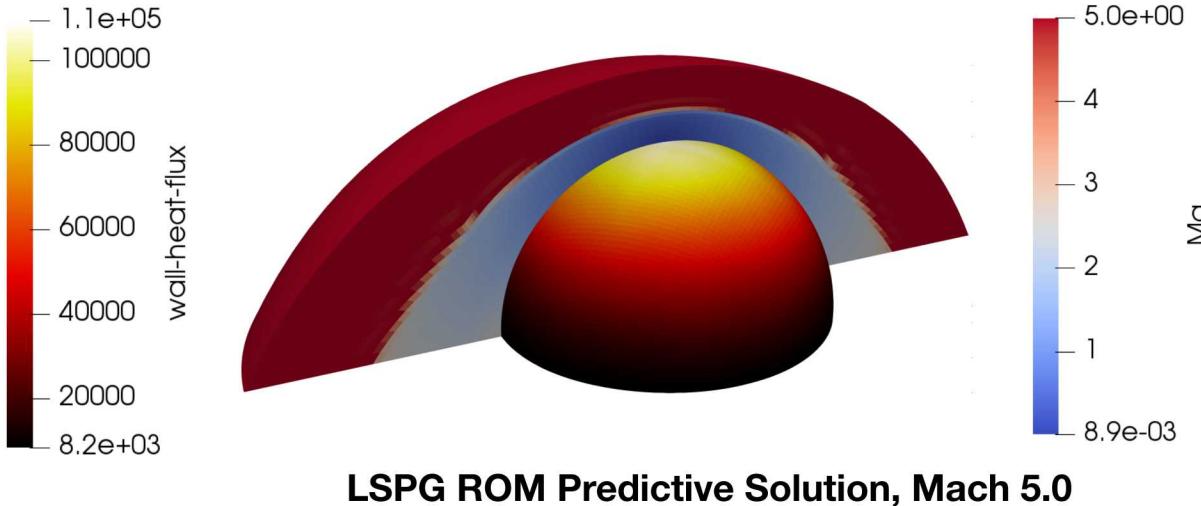
High-fidelity:

- 524288 cells => 2,621,440 DoFs
- 32 MPI ranks, ~62 seconds

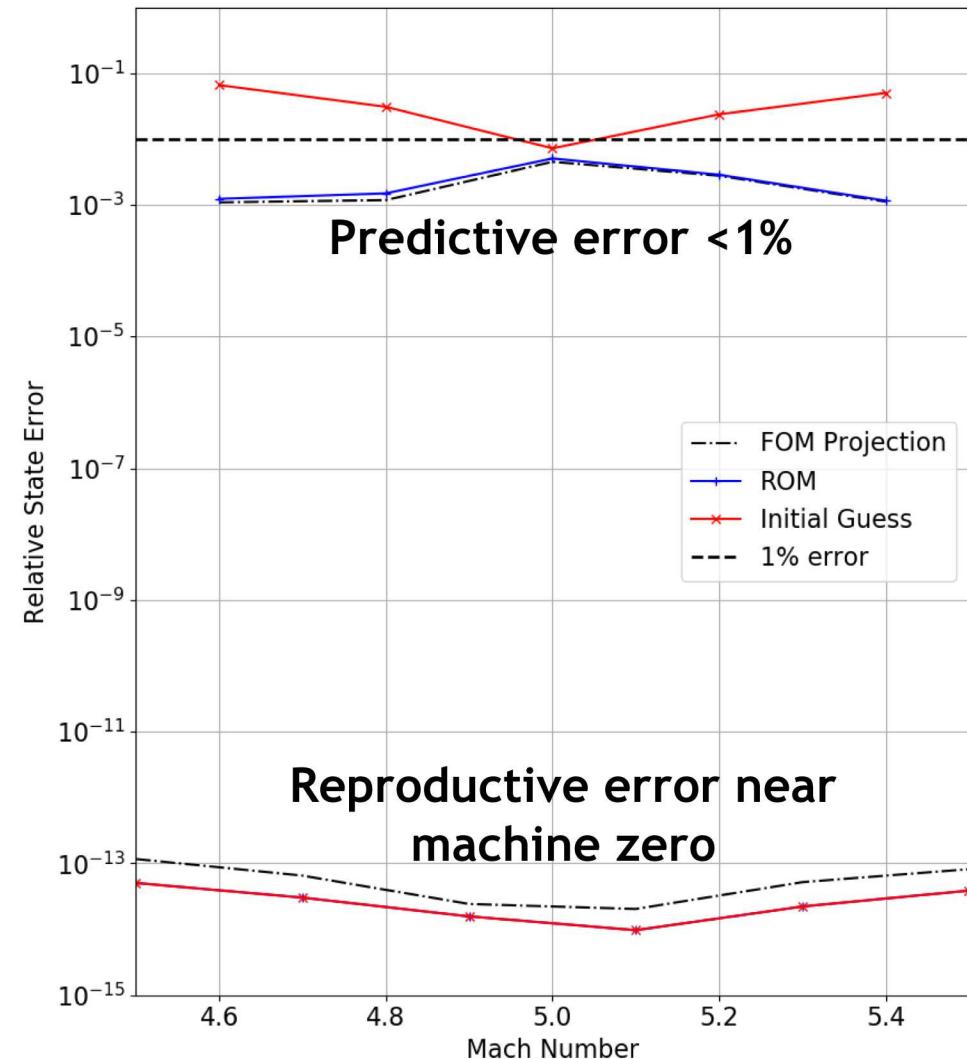


320x savings in core-hours
Reproduced flow field with negligible error

LSPG is accurate for reproductive and predictive steady cases

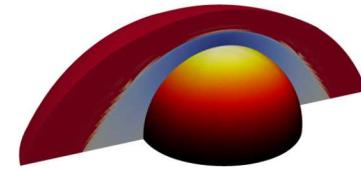


- Full Order Model: Blottner Sphere solved with backward Euler pseudo time-stepping, CFL schedule.
- Training set: Mach Numbers [4.5, 4.7, 4.9, 5.1, 5.3, 5.5]
- Test set: Mach Numbers [4.6, 4.8, 5.0, 5.2, 5.4]
- POD basis:
 - columns scaled to be unitary.
 - each conserved quantity scaled by its maximum over all FOM solutions.
- ROM: LSPG solved with Gauss-Newton iteration

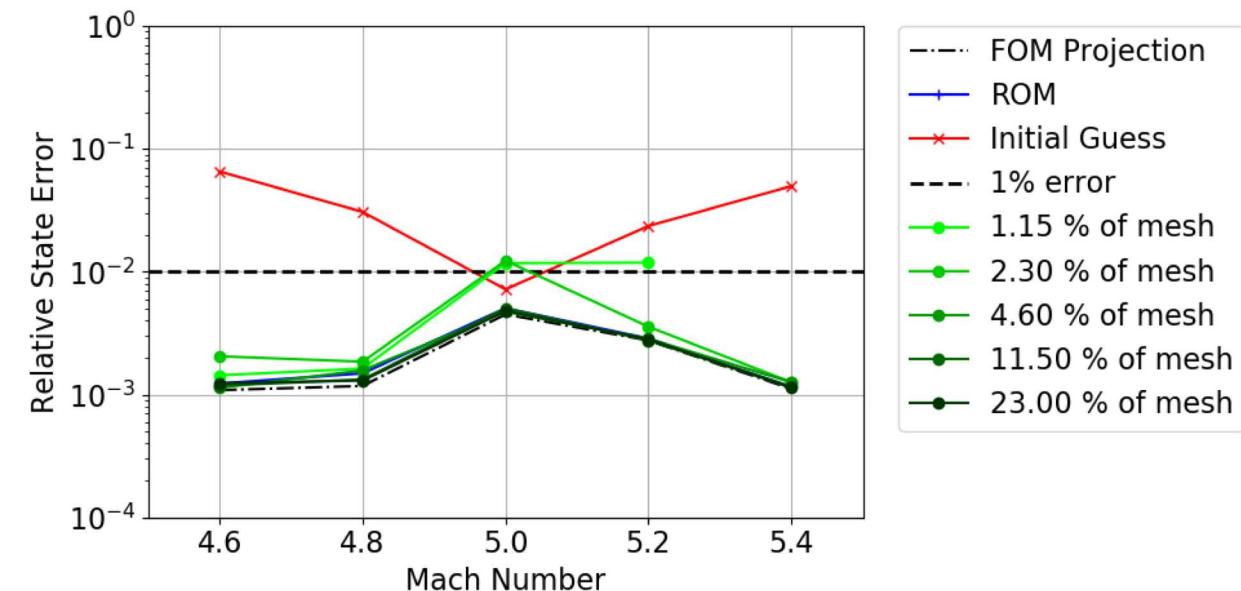


$$\text{Relative State Error} \equiv \frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|_2}{\|\mathbf{x}\|_2}$$

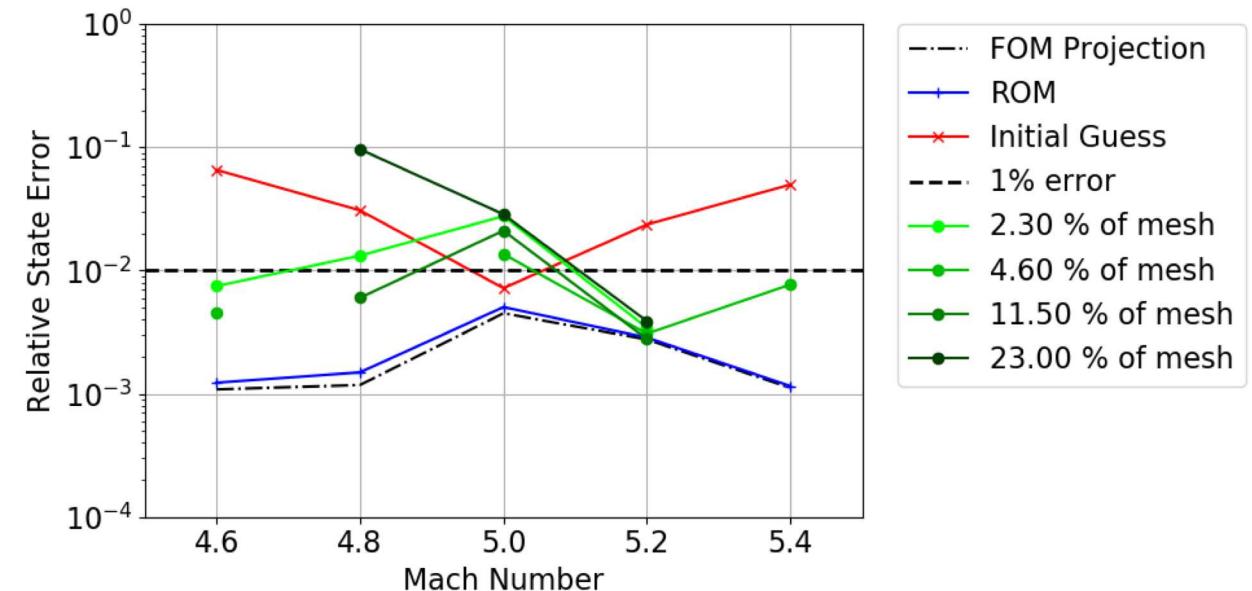
LSPG is still accurate with sample mesh, but greedy algorithm performs poorly relative to random sample mesh



Random Samples



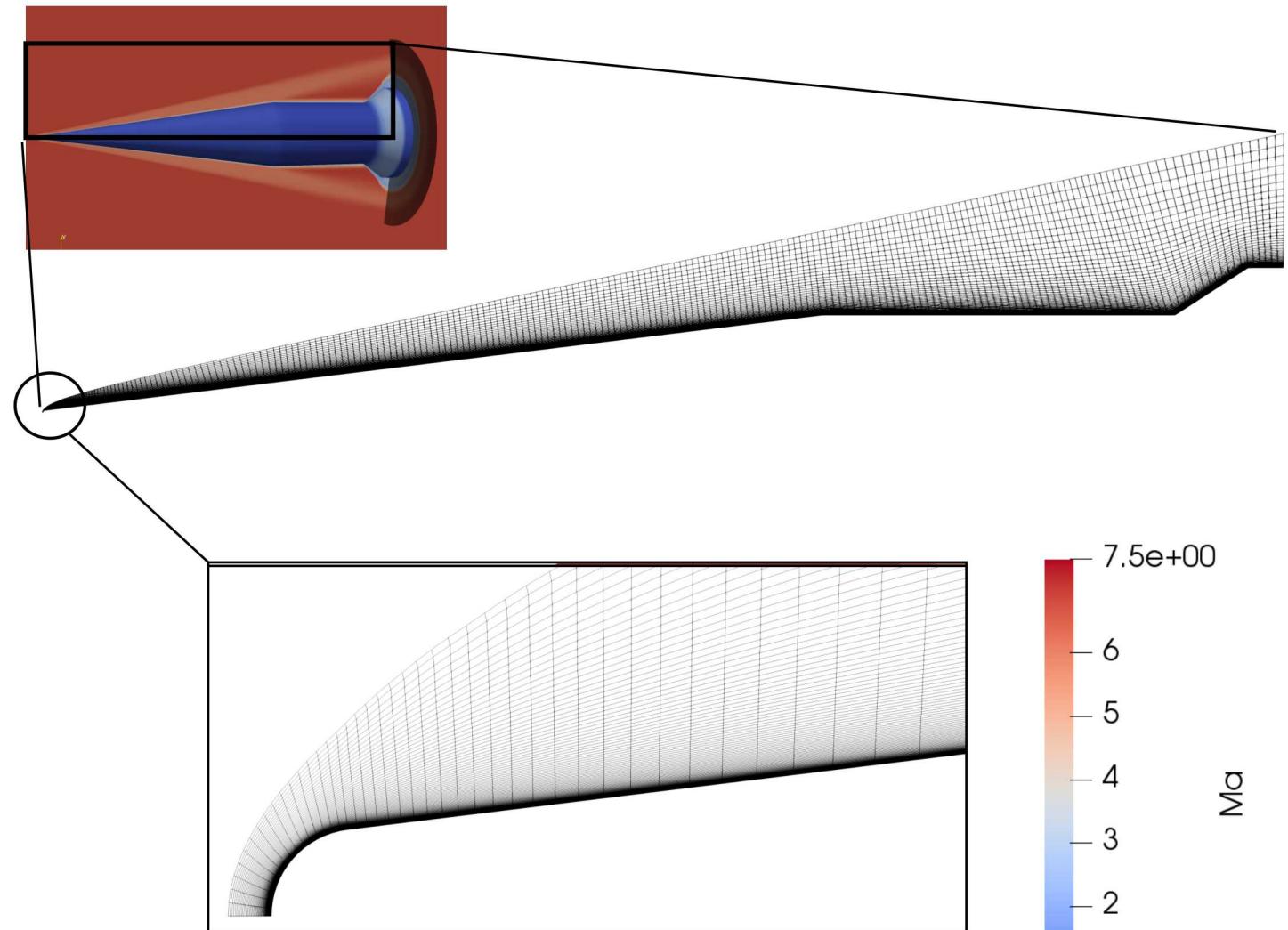
Greedy Algorithm



$$\text{Relative State Error} = \frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|_2}{\|\mathbf{x}\|_2}$$

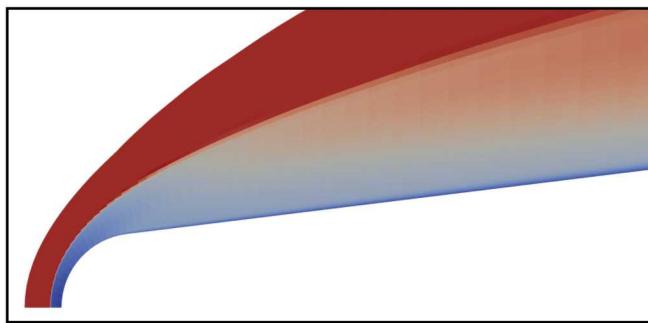
Case 2: Axis-symmetric HIFiRE flight vehicle

- Flow field:
 - Free stream Mach No. = 7.19
 - Reynolds No. = 41.9 million
 - Boundary layer transitions to turbulence (use Spalart-Allmaras with specified transition location)
- Spatial discretization:
 - 2nd-order finite volume
 - 32768 cells

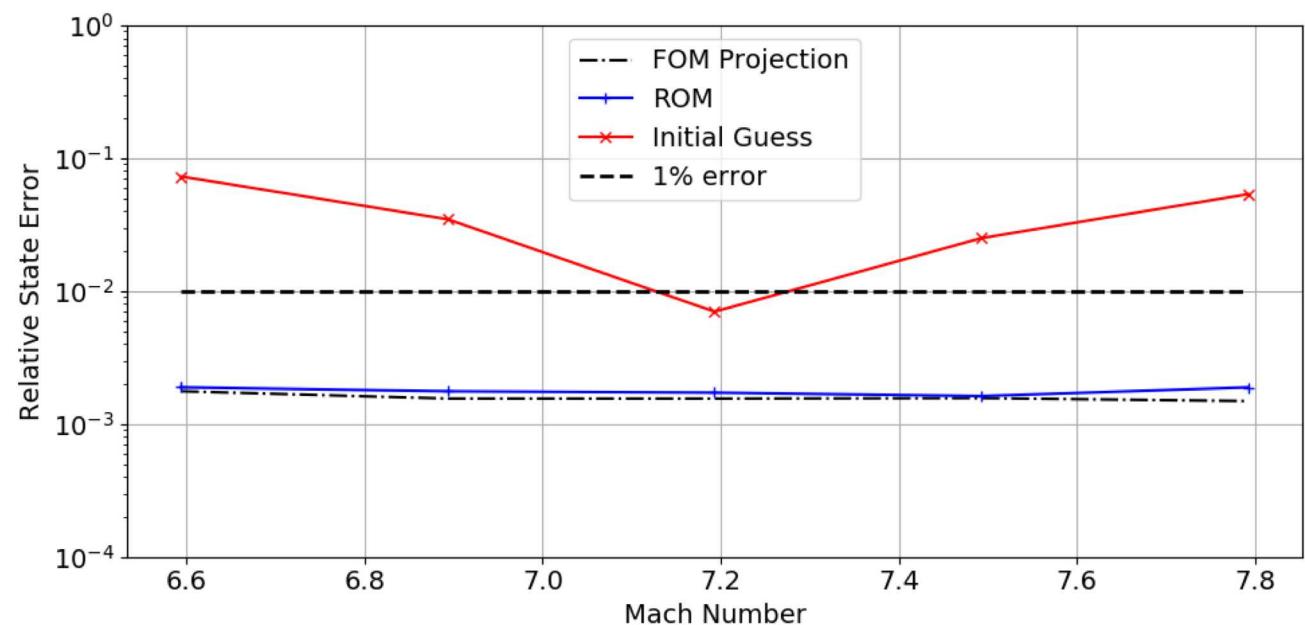


Numerous flow features with range of length scales

LSPG is accurate for HiFiRE predictive cases

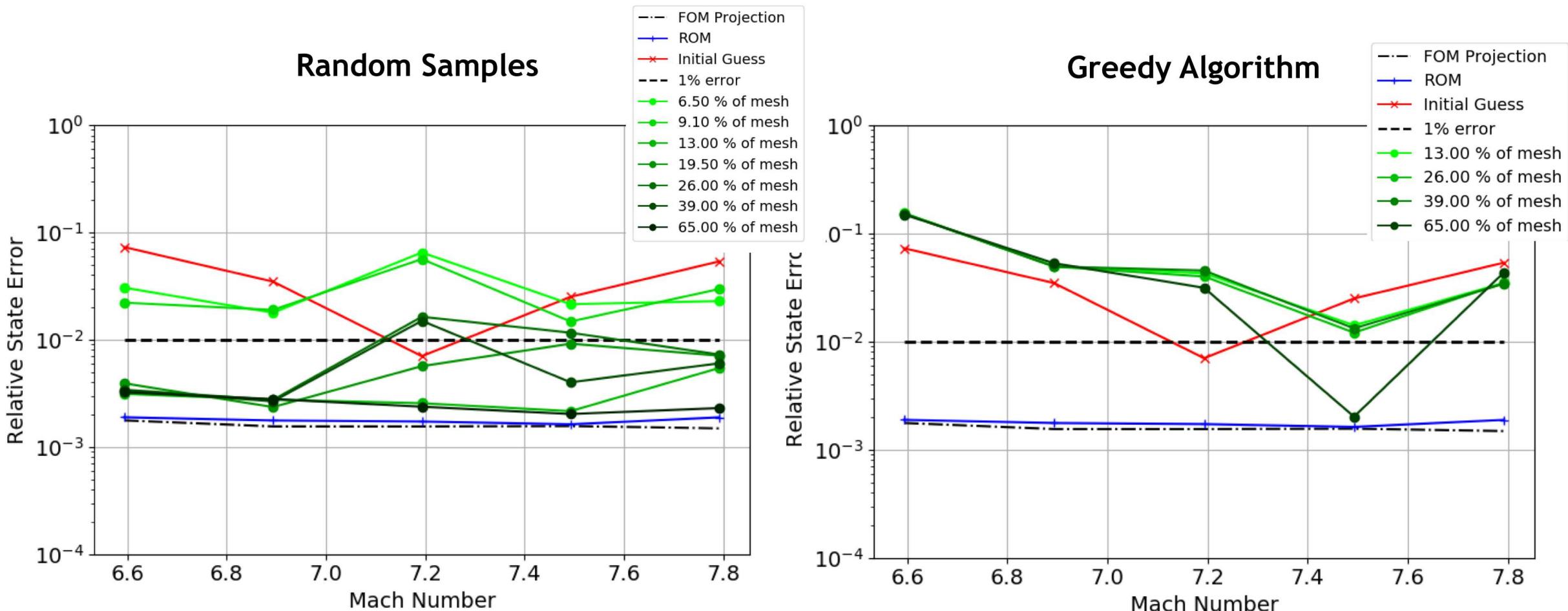


- Full Order Model: 2D HiFiRE solved with backward Euler pseudo time-stepping, CFL schedule.
- Training set: Mach Numbers [6.47, 6.76, 7.04, 7.34, 7.62, 7.91]
- Test set: Mach Numbers [6.59, 6.89, 7.19, 7.49, 7.79]
- POD basis:
 - columns scaled to be unitary.
 - each conserved quantity scaled by its maximum over all FOM solutions.
- ROM: LSPG solved with Gauss-Newton iteration



$$\text{Relative State Error} \equiv \frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|_2}{\|\mathbf{x}\|_2}$$

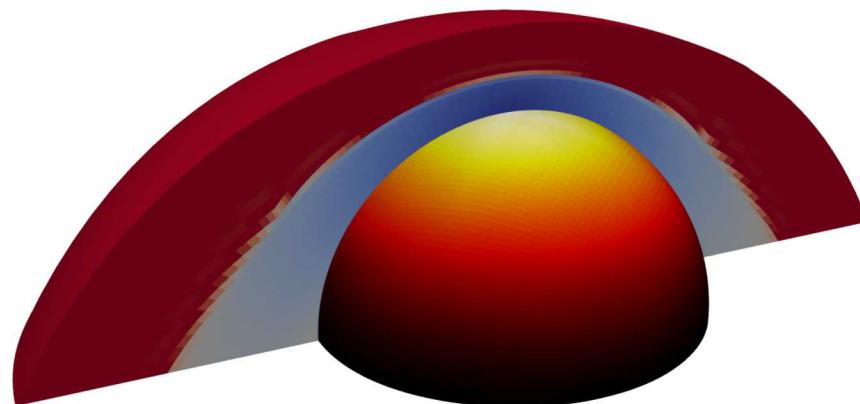
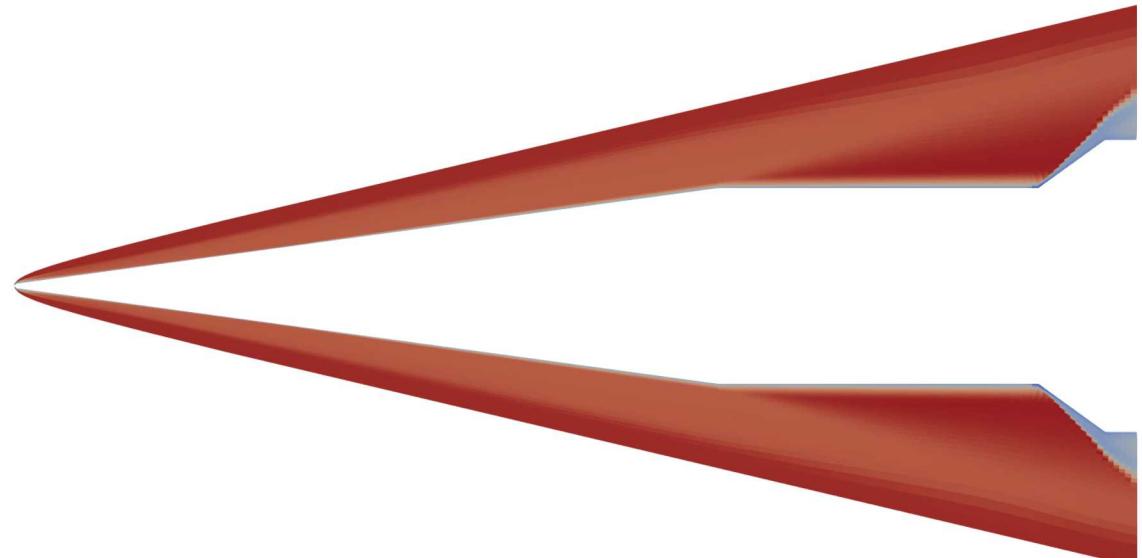
Random hyper-reduction works for HIFIRE predictive cases



$$\text{Relative State Error} \equiv \frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|_2}{\|\mathbf{x}\|_2}$$

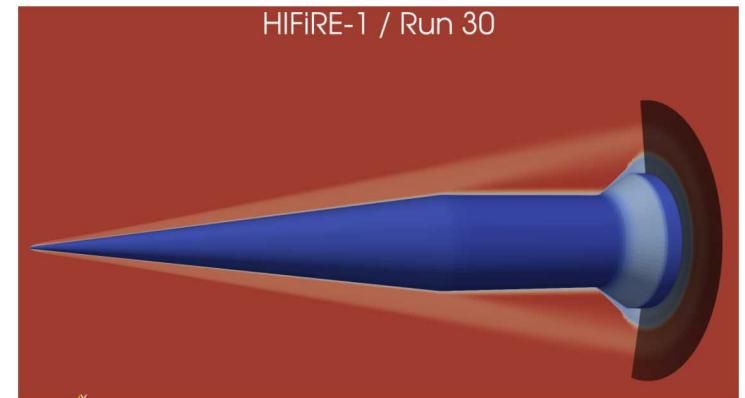
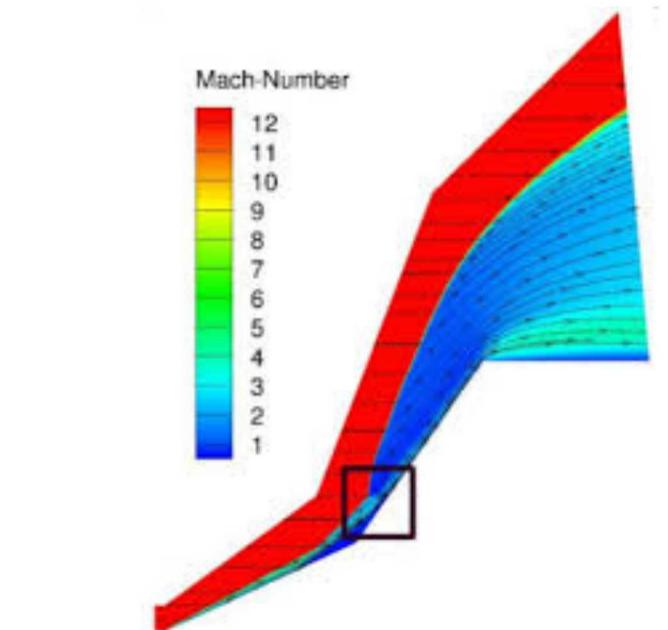
Conclusions

- High-fidelity simulations are crucial, but expensive for hypersonic vehicles
- Model reduction of hypersonic flows with LSPG shows promise:
 - Preliminary results for the Blottner sphere and HIFiRE cases show low cost and accuracy of LSPG.
 - Hyper-reduction works, but the greedy algorithm results in lower accuracy than randomly selecting cells.



Future Work

- Sample mesh algorithms and implementation for steady problems
- Consider larger parameter variations and multiple parameters
- New cases
 - 3D HIFiRE geometry with asymmetric flow.
 - Double cone with non-equilibrium chemistry.
 - Thermal and Ablation model ROMs
- Different ROM methods
 - LSPG with conservation constraint
 - Manifold-LSPG approach
- **Goal: apply ROM to physically relevant parameter space, such as a range of flight conditions**



Double cone Mach contours
courtesy J. Ray, Sandia

Relevant Publications

- [1] K. Carlberg, C. Bou-Mosleh, and C. Farhat. "Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations," *International Journal for Numerical Methods in Engineering*, Vol. 86, No. 2, p. 155–181 (2011).
- [2] K. Carlberg, Y. Choi, and S. Sargsyan. "Conservative model reduction for finite-volume models," *Journal of Computational Physics*, Vol. 371, p. 280–314 (2018).
- [3] K. Carlberg, C. Farhat, J. Cortial, and D. Amsallam. "The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows," *Journal of Computational Physics*, Vol. 242, p. 623–647 (2013).
- [4] K. Carlberg, M. Barone, and H. Antil. "Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction," *Journal of Computational Physics*, Vol. 330, p. 693–734 (2017).
- [5] K. M. Washabaugh, "Fast Fidelity for Better Design: A Scalable Model Order Reduction Framework for Steady Aerodynamic Design Applications", PhD Thesis, Department of Aeronautics and Astronautics, Stanford University, August 2016.

Upcoming: a paper on Pressio

Backup Slides

Greedy Algorithm [Washabaugh, 2016]

Algorithm 4 Selection of the masks.

Input: Desired number of sampled nodes n_{SN} , and the ROB for the nonlinear terms, $\Psi = [\psi_1, \dots, \psi_k] \in \mathbb{R}^{n \times k}$

Outputs: $\mathcal{E}, \mathcal{E}'$

- 1: Find $\xi = \text{nodeWithMax}(|\psi_1|)$
- 2: Identify the degrees of freedom $\{e_{(\xi, i_{DOF})}\}_{i_{DOF}=1}^{n_{DOF}}$ associated with node ξ
- 3: Set $\mathcal{E} = \{e_{(\xi, 1)}, \dots, e_{(\xi, n_{DOF})}\}$
- 4: $n_{\text{nodesToAdd}} = \text{ceil}(n_{SN}/k)$
- 5: **for** $i_{\text{vec}} = 2, \dots, k$ **do**
- 6: Set $\mathbf{U} = [\psi_1, \dots, \psi_{i_{\text{vec}}-1}]$
- 7: **for** $i_{\text{node}} = 1, \dots, n_{\text{nodesToAdd}}$ **do**
- 8: Compute masked quantities $\bar{\bar{\psi}}_{i_{\text{vec}}}$ and $\bar{\bar{\mathbf{U}}}$ corresponding to \mathcal{E}
- 9: Compute gappy reconstruction $\widetilde{\psi}_{i_{\text{vec}}} = \mathbf{U} \bar{\bar{\mathbf{U}}}^+ \bar{\bar{\psi}}_{i_{\text{vec}}}$
- 10: Find $\xi = \text{nodeWithMax}(|\psi_{i_{\text{vec}}} - \widetilde{\psi}_{i_{\text{vec}}}|)$
- 11: $\mathcal{E} \leftarrow \mathcal{E} \cup \{e_{(\xi, 1)}, \dots, e_{(\xi, n_{DOF})}\}$
- 12: **end for**
- 13: **end for**
- 14: Identify \mathcal{E}' , the degrees of freedom necessary to evaluate the residual and Jacobian at \mathcal{E} .
