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‘ Cradle-to-Grave Model of PMDI Foam

Overarching Goal: A computational model for foaming, vitrification, cure, aging to help us
design molds and determine how inhomogeneities effect the structural response of the
final part, including long term shape stability
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PMDI Foam Filling Simulation of Complex Part.I

Two key reactions: Isocyanate reaction with polyols and water I
H O
[ Urethane formation,
Ri—N=C=0 + HO—R; —> R{—N-C-0O-R; crosslinking
H O

I Foaming reaction yields
Ry—N=C=0 + H20 —» R4—N-C-OH — CO, * R;—NH, C€O,andamine

Various follow up reactions: Isocyanate reaction with amine, urea and urethane

* Isocyanate reacts with water to create gas
and foam expansion, changing the material
from a viscous liquid to a multiphase
material.

* Isocyanate reacts with polyol to polymerize
and vitrify to a solid.

Time = 5.0

Coupled Finite Element Method/Level Set to

Solve Foam Dynamics

* @Gas and liquid are homogenized to a
continuum

* Density evolves based on kinetics of gas
expansion

* Viscosity evolves with cure and gas fraction

Rao et al., “Polyurethane kinetics for foaming and
polymerization” , AICHE Journal, February 2017

g
Rao et al, “A Level Set Method to Study Foam Processing”
IJNMF, 2012 .




Equations of Motion Include Evolving
Material Models

Momentum equation and continuity have variable density, shear viscosity, and bulk viscosity

p%:—pVOVV—Vp+VO(yf(Vv+Vvt))—VO/I(Vov)l+pg
Dp,

—+p,Vev=0

pr P

Energy equation has variable heat capacity and thermal conductivity including a
source term for heat of reaction for foaming and curing reactions

pC %—f+pCpfv0VT =V e(kVT)+ pp,AH,_ (2—9;

Extent of reaction equation for polymerization: condensation chemistry

S el o

Molar concentration equations for water and carbon dioxide I
O, X NMR imaging shows coarse I
1.0 C _ I Joam HyQ microstructure (Altobelli,
= =—k, Cr Hat) M 2006)
dt Hy0 ™~ H,0 H,0
dCC02 k Cl’l C _ pfoam'xC02 kH20 - AH20 eXp(_EH20 /RT)
=+ co, —
H,0“~ H,0
dt 2 2 MC02 ﬂ



Complex Material Models Vary with Cure,
Temperature, and Gas Fraction

I Foaming reaction predicts moles of gas from which we can calculate density

PM .,

P =R
V= Vgas _ MCOZ CC02 _ L
V;iq IO gas ' 1 TV

pfoam = pgas¢v + pliq (1 _¢v)

Compressibility built
into this model via the
ideal gas law for gas

I Thermal properties depend on gas volume fraction and polymer properties

k=2 Dk, +(1-Lok,

Cpf = Cpl¢l + va¢v + Cpe¢e

Shear and bulk viscosity depends on gas volume
fraction, temperature and degree of cure

Foam is a collection of
bubbles in curing polymer

& —¢"

H =k, eXp(—¢) Ho = Hq eXp( = )(
-1
/1 (@, -1

M. Mooney, J. Col%’id Sci., 6, 162-170 (1951).
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Experiments to determine foaming and curing
kinetics as well as parameters for model
Equations solved with the finite element method
using a level set to determine the location of the
free surface (Rao et al., IJNMF, 2012)

Gibson, L. J.; M. F. Ashby. Cambridge
University Press, Cambridge, UK, 1990




Heaviside

Coupled Finite Element Method/Level Set
to Solve Foam Dynamics
%+V-V¢=O

Level set advects with the fluid velocity: ot

Properties vary with the level set based on B B
the level set and modulated using the (@) = Myas =1 o () + 11 o
Heaviside K(P) = (Kyuy = K oo VH (D) + K 1y

p(P) = (Pgas = P joum VH (9) + P foam

L in(72)
gas H(¢):E(I+E+Ta)’ a<p<a

foam
|

— U T

Equations of motion, kinetics and energy balance use averaged properties based on
level set, ¢

Momentum and Continuity shown for an example. Energy is similar
p(¢)(% +veW») =—VP+ V- (n(g)(Vv+W) —@ nP)— K(¢))(V' v)D+p(P)g
p(9)
ot

+V- p(pyv=0

Reactions equations use equation averaging and a Heaviside directly on the equations

Rao et al, C&F, 2018
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Computational Modeling of Foam Expansion |
Can Help Design a Mold Filling Process ®

Time = 5.0 R
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Simulations & Experiments

Simulations
° Flat configuration
° 50 tilt
° 200 tilt
° 20° tilt toward the shelf feature

° Study of vent locations

Experiments

° Flow visualization experiments

o Additive manufacture mold

Goal: Use foaming and filling modeling
and flow visualization experiments to
develop confidence in foam model




These Vent Locations Seem
;1 Representative of a Foaming Process

Simulation tests
: the idea of adding

. a vent on the shelf
feature




Initial Conditions for Model: Experiments
o1 Show Shelf Starts Well-Filled

i} R T — ‘
App 26,2017 15:04:42

| Flow visualization study using

PPT——— ) \ | opaque mold to determine filling

ip N e, 2 _ of shelf supports use of flat initial
2o B " ‘ condition

Flow visualization verifies initial
condition: .
* Foam levels well and flows to fill she “JSBimulation IC with no tilt |

area
« Simulation initial condition of a flat

interface seems fairly accurate

* Shelf is half-filled at
start of the simulation




Foam Filling and Curing for Flat Configuratio

Time = 5.00 Base Case:

* Look at issues
for filling the
mold when it is
flat on the table

* Model shows
density
evolution and
filling profile
over time

rho
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time=82.7s
voids = 3.6%

rho

Z ' 4.300e-01
3.850e-01
‘ 3.400e-01

2.950e-01

Density Variations at Different Locations: Flat |
Mold with Shelf Vent




Dynamics of Filling with 200 Tilt Angle

Time = 5.000000

Foam Using a 20° Tilt

Angle forward similar

to legacy process

 Initial condition has
a tilt forward for
foam position and a
flat interface

« Gravity vector is
also tilted




«| Plot of Density Variation From Nominal

| FLAT FILL
Density Variation: |
(plocal_pnominal )2 I
[(o-p..)av i
Prominal = 2408/745ml
= 0.322g/ml
time=82.7s |

voids = 3.6%
Int. var. = 2.81 |

z density_var I
1.034e-01
Y 7.758e-02
5.172e-02
1 2 586e-02

1.154e-11



Plot of Density Variation From Nominal

15

FLAT FILL HOT |

Density Variation:
(plocal_pnominal )2

[(o=p,pn)dv

Prominal = 2408/745ml
=0.322g/ml
time=69.3s |
voids = 4.5%
_ Int. var. = '
z density_var 3 5 6 I

2.586e-02

1.034e-01
¥ 7.758e-02
5.172e-02
1.154e-11



Plot of Density Variation From Nominal W
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| TILT 20 DEGREES FILL
Time = 71.091 o Density Variation: ‘
(plocal_pnominal )2 |
; |
[(o=p,,, ) dV |
Oromina = 240g/745ml
= 0.322g/ml
time=71.1s
voids = 2.9%
int. var. = 2.87
|
z density _var
> 1.034e-01 I
Y 7.758e-02
2 5.172e-02
. 2.586e-02 U ‘

1.154e-11



17‘ Density Variations: Back View

Time = 82.737 | FLAT FILL Time =71.091 | T|LT 20 DEGREES FILL |

Y density_var

Y density_var . 1.034e-01
\(g 1.034e-01 . @Fw‘ard tilt moves defects to the 7.7586-02
X i z 5.172e-02

, rrssesz back part of the mold

« Tilt fills faster than flat 1154011

Volume versus time
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‘ Computational Models of Foam

FLAT FILL

Time = 82.737 Time = 69.269

20° Tilt

FLAT HOT

Time =71.091

Density variations for three cases of interest

Time = 75.2433

-

Max. Time (s) 71s
Voids 3.6% 4.4% 2.9%
Density 2.8 2.9 3.6
variation

All cases fill well!
* Model over-predicts voids, but

Foam filling for 20° tilt: the angled fill
reduces voids on the new shelf

predictions are small
» Density variation greater with

tilt




19‘ Computational Models of Foam

Time = 5.0 Time=749 |

&

Evolution of density for flat mold with vent on t/ﬁe shelf featule W”i
Time = 75.2433

Flow visualization study supports
computational conclusions

Foam filling for 20° tilt: the angled fill
reduces voids on the new shelf




Validation Experiment: 5 Degree Tilt:
»l Foam Fills Shelf and Levels Quickly

* New experiment using clear mold

* Room temperature mix of foam, which heats up to 24°C
* Mold stays roughly 22°C

* 5 degree tilt towards the front of the mold



21

Run model with similar initial
conditions:

« 240g material

* 4 degree tilt

* Room temperature mold and foam

Experimental Conditions: Back of Mold

Shape of the model interface
matches well with shape of
experiment thought model
fills back feature faster




22‘ Compare Mold Front: Early Times

——

lay 22, 2017 11:50:27.9

Time = 34.184

e







24‘ Compare Mold Front: Late Time

Time = 68.204

Shape of the model interface
matches well with shape of
experiment and the time-
scale is similar




2 Shelf Feature Fills Well in Clear Mold

Experiment shows good filling of
the shelf feature even at early
times giving confidence in the
foam model




1 Conclusions

° All simulations filled fairly well: Complex mold should fill with

new shelf!
°Density of the shelf may be lower than nominal density

> Higher temperature increased void size due to ideal gas law,
though it filled faster on average

°Vent on shelf did not change void content or density — this is
probably due to coarse mesh. In real world, it should help

°Model follows free surface of foam fairly well

°Combination of experimental and computational work led to
synergistic breakthroughs creating confidence in mold redesign

°Density and density gradients are still not quantitative and give
direction for future work -> bubble-scale modeling



CT Microstructure of Bubbles from Large
omplex Mold

|

Sample 1 top

Foam microstructure

» Polydisperse bubble
sizes

« Shear near
boundaries cause
elongated ellipsoidal
bubbles
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|Bubble Expansion in a Polymerizing Fluid

Time = 0.000001 Time = 182.325256 Time = 339.825256

©
o

« Bubble grows as CO, enters the bubble (VLE model)
« Growth is halted abruptly once the polymer reaches

the gel point and the viscosity diverges

» ALE mesh is robust over shape change

« Data shows the correct trends when compared to

experiment

Time = 434.825256
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» Post-gelation, bubble pressurization is observed
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Future Work

SEM of foam
showing
polydispersity

Bubble at walls are
elongated and show
coarsening

* Current model is adequate for production
calculation

* Next generation model need to include
o Equation of state for density approach for gas
phase
o Two-phase CO, generation model: solubilized CO, in
the polymer and CO, gas in the bubbles

* Include local bubble size and bubble-scale

interactions

o Predict bubble size with Rayleigh-Plesset equation

o From the bubble size and number density, predict
foam density

o Bubble-scale modeling to include gelation and gas
pressure in density model to make it more
predictive

oDrainage/creaming term could help make density
model more representative of experiments

- R 0



